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Chapter 1

Trigonometry for Acute Angles

Here beginneth TRIGONOMETRY!

1.1 Measures of Physical Angles

We start off by reviewing several concepts from Plane Gepneetd set up some basic termi-
nology.

A geometric angleis simply aunion of two rays that emanate from the same squndach
we call thevertexof the angle; the two rays are called thidesof the angle. When the rays are
named, says; ands,, our angle will be denoted byr,s,. Depictions of geometric angles will

look like the one shown in this figure:
S2

Vv s1
Figure 1.1.1

The above figure depictsreon-flatgeometric angle’s; s,, with vertex!/. Theflat angles are:

e thestraight angles, whose sides avpposite “halves” of a line

e thetrivial angles, whose sidewincide
Any non-flatangle/ s s, splits the plane in twoegions which we refer to as thghysical angles
enclosed by/s; s,.

S2

LU

S1

LV

Figure 1.1.2

The figure above depicts these two physical angles, dengtedband £V. To be a bit more
specific,4 U is theinner physical angle enclosed hys; s,; while £V is theouter physical angle
enclosed by s;s,. Both £l and<V have sameertex which is simply the vertex of the geometric
angle/s; s, that encloses them.

However, when we are dealing witlat geometric angles, we agree that

1



2 1.1. MEASURES OF PHYSICAL ANGLES

e The physical angles enclosed byt@aight geometric angle — which is just a lin® — are
simply the twohalf-planesdetermined by¥#. These two physical angles will be called
straight physical angles

e The physical angles enclosed byrizial geometric angle — which is just a ray- is simply
s (the ray itself) — which we call &ivial physical angle and theentire plane— which we
call acomplete physical angle

So, unless we are dealing with a straight physical angleytb@hysical angles enclosed By, s-
are clearly distinguishable: one is “small” (ther angle); the other is “big” (theuterangle).

In particular, any triangleN ABC' has three (clearly defined) physical angl€s!, £ B, and
£C', as depicted in the figure below.

C
LA £B
A B
Figure 1.1.3

Turn Measure and the Protractor Principles

We measure a physical angle with the help giratractor. To be precise, if we start with
some physical anglg'U, what we call gorotractor suitable for <£U is nothing else but aircle
C, whose center is placed at the vertex<di. With this set-up, we say thatll is central inC.

S2

I
LU
S
81
C
Figure 1.1.4

Once a protractor is set up like this (as shown in the pictib@v@), two important geometric
objects arise:

(A) thearc ['on C subtended by U,

(B) thedisk sectoiS on C subtended by L.
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With all the set-up as above, thern measure of LU is the ratio:
t(LU) = Iengtr(f) : circumferenceC).

Furthermore, if we consider the entire diSkenclosed byC, then the turn measure can als¢
be presented as:
t(LU) = Area(S) : AreaD).

CLARIFICATIONS AND ADDITIONAL NOTATION. The turn measure of a physical angle is
always a number in the intervél, 1]. To simply our notation a little bit, instead of writing
“t(LU) = 7" we are simply going to write: tl = 7 turn(s)”

Example 1.1.1. Certain physical angles can be clearly distinguished,dasg¢heir measures,
as shown in the table below.

Angle type| trivial | straight| complete| right

Measure | Oturn(s)| iturn | lturn | {turn

Table 1.1.1

The Protractor Principles

I. The turn measure of an angtimes not depend on the protractor radius
II. Two physical angles areongruentif and only if they havequal turn measures
[ll. For any rays and any numbef < 7 < 1, there areexactly two physical anglesU
and LU, such that:
e both<£U and AU’ haves as one of their sidesand
elU=U-=r1 turn(s)
Whenr = 0 or 7 = 1, only onesuch angle exists

NOTATION CONVENTION. The measures of the physical angles (see Figure 1.1.3)iamgle
AABC are denoted byl (the measure of' A), B (the measure of B), andC' (the measure of
£LO).

Radian Measure

Besides theurn, another very important unit for angle measurement igdléan. When we
want to measure an angle radians we still use protractors as above, bustead of dividing
Iengtr(f“) by circumferencéC), we dividelengtr(f) by theradiusof C. Since the circumference
of a circle is27 - radius our conversion rule simply reads:

1 turn = 27 radians. (1.1.1)

Using the identity (1.1.1), we can convert between our yngsg:
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Turn < Radian Conversion Formulas
T turn(s)= 2« - T radian(s) (1.1.2)

0 radians(s)= % turn(s) (2.1.3)

NOTATION CONVENTION. When usingadians we ought to write angle measures likéd =
0 radian(sy We are going to be “lazy” from now on, anoimit the word“radian(s)” from our
notation. In other words, whenever we see:

U= number
we understand thdhumbel stands for theadian measure of U.

@ The “lazy” notation isonly used with radians!. Thus, whenother unitsare used (for
exampleturng, theymust be specified!

Circle Measurements

The radian measure is very useful, particularly when comguéengths of arcs, areas of sec-

tors, as seen in the following set of formulas.

Arc Length and Sector Area Formulas

Assume a circleC is given, along with some physical angi&l, which is central inC, and
hasradianmeasurell = 6. Assume also, some lengtinit is given, so that:
e theradiusof C is r units; R
e thearc I' subtended by'U has lengtlil’) = £ units;
¢ thesectorG subtended by'U has Are@S) = A square units
Then the four numbens, r, £, and A are linked by the following identities:
L=0r (1.1.4)
A=31tlr=107" (1.1.5)

In most applications involving arc or sectors determinectegtral angles in circles, we are
facing the following

Four-Number Problem: Giventwo of the number#, r, £, A, find themissing two

All instances of the Four-Number Problem (all in all, there six possibilities) can be solved
with the help of (1.1.4) and (1.1.5), and the following forasuwhich are derived from them:

Derived Angle-Radius-Length-Area Formulas. If the positive number8, r, £, A satisfy
(1.1.4) and (1.1.5), then they also satisfy:

L [2A  2A

2A £°
r

= — 1.1.7
72 2A° ( )
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2
=4 _pas  a-’

: =5 (1.1.8)

@ The second equality from (1.1.6) deserves a little explanatWhen we look at (1.1.5),
we can re-write it ag'> = 2A4/6. In principle an equation of the from* = numbef hastwo
solutions: » = ++v/number However, since- is positive (as it represents a distance), only the
solution that uses the sign will be of interest to us. All other equalities that ihv@a square root
are treated the same way.

Example 1.1.2. GivenU = 27 /3 andradius = 6 inches find Iengtr(f) andArea(S).

Solution The given quantities in our Four-Number Problem @re- 27 /3 andr = 6 (with
“inch” as ourunit). Using (1.1.4) we geﬂengtk(f) =0 = (27/3)-6 = 4w ~ 12.56637061 inches
Using (1.1.5) we getArea(S) = A = 5 - (27/3) - 6% = 127 ~ 37.69911184 square inches

Example 1.1.3. GivenU = 5 andlengtl‘(f) = 1.2 miles theradiusof the circle andArea(S).

Solution The given quantities in our Four-Number Problem ére= 5 and?¢ = 1.2 (with
“mile” as ourunit). Using (1.1.6) we getradius = » = 1.2/5 = 0.24 miles Using (1.1.5) we
also getArea(S) = A =3 -£-r =3-1.2-0.24 = 1.44 square miles

P> More examples of the Four-Number Problem are provides indises 1-3, as well as in
the K-STATE ONLINE HOMEWORK SYSTEM.
Degree Measurement

Besides théurnand theradian another very popular unit for angle measurement isltfigee
denoted with the help of the symbal So when we want to specify tlteegree measuref some
physical anglel, we will write:

~

u= D°.
The defining conversion rule for the degree measure is:

1 turn = 360°. (1.1.9)

As we continue through the rest of this section, we will gi@tudiminish the use of turn measures,
and limit ourselves only to radians and degrees. UsingX}L.the above conversion rule now reads

27 [radian$ = 360°. (1.1.10)

(According to our Notation Convention stated earlier, wewdt omit “radian(s) from all radian
measure specifications. For pedagogical reasons, we iNikestp “radian(s) in certain formulas
for awhile, but use square brackets to remind us that, onggetveore and more comfortable with
our Convention, we will eventually omit fadian(s)’ from our notations.)

By taking halves on both sides, the identity (1.1.10) become
7 [radian$ = 180°, (1.1.11)

so we can easily convert between radians and degrees, using:
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Degree<+> Radian Conversion Formulas

o_pn. T .
D° =D 750 [radiang; (1.1.12)
0 [radian$ = <0 : @> (1.1.13)
™

Example 1.1.4. If we know that a physical anglélLl measure305°, and we want to compute
its radian measure, we use formula (1.1.12), which yields:
~ s 105-7  7m

U=105.- — = = — ~ 1.832595715.
0 180 180 12

Notice that we omittedradian$ from our final answer. As for the way we present the radian
measure, even though the numerical value given above is gjomaigh to give us an idea of how
large/small our angle is, the first answer, which presemsdtian measure adraction involving
integers and integer multiples afis the preferred one, as we deem is ag=act value
: 117 . .
Example 1.1.5. If we know that a physical anglél measurei—ﬂ (in radians), and we want
to compute its degree measure, we use formula (1.1.13) hwiedds:

~ 117 180\° 117 -180\° 22\ °
U= (— — =|— ] =(— ) =4.5°
450 7 450 - 5

For future reference, we now expand Table 1.1.1 which hatLtilemeasures of several “spe-
cial” angles, to also include the radian and degree measures

Angle type trivial | straight| complete| right

TurnMeasure | 0 turn(s) %turn 1 turn %turn

RadianMeasure 0 T 21 g
DegreeMeasure 0° 180° 360° 90°
Table 1.1.2

The D(egree}M (inute)-S(econd)Measurement System

When doing computations using degrees, we can of coursergrdseem aslecimals as we
have seen for instance in Example 1.1.5. However, whenrdgulith with anon-integerdegree
measure, say°, we may convert th&actional (or decimal) parbf D, we may use sub-divisions
of the degree, which we cathinutes (denoted using the symb@), andseconds(denoted using
the symbol”’). The basic rules that explain how these sub-divisionsetrasare:

1°=60'=60"; 1 =60". (1.1.14)
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Fractional (Decimal) Unit <» Units 4+ Sub-Units Conversion Scheme

Assume we have one measuremeamt, and asub-unit, defined by:

1 unit = m sub-units, (1.1.15)
so that the back and forth conversion formulas are:

X units = X - m sub-units, (1.1.16)
. X )
X sub-units = (—) units (1.1.17)
m
A. Given some measurement of the form
p = U units, (1.1.18)
with U is either afractional, or a decimalnumber we can convert it to the form
pu = A units + B sub-units, (1.1.19)

using the following procedure:
(i) Split the numbelJ into its integer part(which is what we defind to be), and its
fractional part(which we call for the momenX). In other words, we write
U=A+X
with A integer, and0 < X < 1 fractional (or decimal)
(i) Use(1.1.16)to convert the fractional part to sub-units, thus definiBgto be the
productX - m.

B. Conversely, given a measurement presented as (1.1.29amw convert it to the form
(1.1.18), using the formula:

: : B :
A units 4+ B sub-units = (A + —) units (1.1.20)
m

When we specialize procedure B to the DMS system, we get:

DMS — Degrees Conversion Formula

D°M'S" = (A+ — +

Example 1.1.6. Convertl12.3456° to degreesminutesandseconds
Solution We start off by converting to degrees and minutes, usinglioee procedure A (with
degreeas the unit, andninuteas the sub-unit):

12.3456° = 12° + 0.3456° = 12° + 0.3456 - 60" = 12° + 20.736'.

Then we conver20.736’ to minutes and seconds, again using the above procedurer(wiute
as the unit, andecondas the sub-unit), so our calculation continues:

12.3456° = 12° 4 20.736" = 12° + 20" 4+ 0.736" = 12° + 20" 4+ 0.736 - 60" =
= 12° 4+ 20" + 44.16" ~ 12° 20’ 44".
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Example 1.1.7. Convert12°30'45” to degrees
Solution Using the DMS— Degrees Formula we have:

30 67 \° (123600 +30-60+67°
1203067 = [ 124+ =+ —— ) = _
< o0 " 3600) ( 3600 )

B (45()67

20} ~12.51861111°.
3600) o186

When asked to convert ttegrees in decimal fornthe fraction calculation above is not neces-
sary: we can do everything in “one shot” on a calculator byrtgi 12+30/ 60+67/ 3600 \

@ In the preceding two examples we worked with decimals. Haryeaa many instances we
want to work withfractions instead of decimals. This is illustrated in the followingptexamples

89 . .
Example 1.1.8. Convert—gT [radians]to degreesminutesandseconds
Solution We start off by converting from radians to degrees, usiny.{B), which yields:

89 (89 180\°  /897-180\° [89-2\° /178\°

4050 \4050 7 S\ 4050-7 )\ 45 )\ 45 )"
Next we convert to degrees and minutes, using the abovequwoed (withdegreeas the unit, and
minuteas the sub-unit):

178\° .. [43\° . [43\ ., .. [43-4\" . [172Y)
(5) =+ () v+ (g)-o-s+(B0) —o+ (F).

!

172 . . . .
Then we conver 5 to minutes and seconds, again using the above procedurgl\(wiute

as the unit, andecondas the sub-unit), so our calculation continues:
172’ 1’ 1
3°+ (?> =34+ 57 + <§> =3"+57 + (§> 60" = 3°+ 57 + 20" =3°5720".

Example 1.1.9. Convert14°7'12” to radians

Solution We start off by converting to degrees, using DMSDegrees Formula. Since we
want to work with fractions, throughout the entire compiatatwe will be careful and simplify as
much as possible

31 12 \° 31 1\°
14°31'12" = (4+ =+ —) = ([4+—4+— ) =
< * 60 + 3600) ( + 60 * 300)
_ [(14-300+31-5+1\"  [4356\°  [363\°
N 300 - \300/) \25)°

Next we convert to radians, using (1.1.12):

ez — (303 _ (383 _ 363w 12lm _ 12lm s 018074,
25 25 ) "180  25-180 25-60 _ 1500

As pointed out earlier, if we only want the radian measuraesged in decimal form, we could
have done it in “one shot’ with our calculator by typing:
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(14+31/ 60+12/ 360
0) «7/ 180

. 1217 . L
However, the conversiohi®31'12" = TO?(; is always the preferred one, as it givesexiact value

Example 1.1.10. (Compare with Example 1.1.2.) Suppose we have a centraéaAnng
100°20" in a circle of radiusl2 cm, and we are asked to compute the length of thé axbtended
by it.

Solution Of course, what we need here is formula (1.1.4),dmfbre we use it, we must find
the radian measui@ of our angle Working as in the preceding Example, we have

~ 20\ ° 1\° 301\° 301\° 7  30Im
_ o !/ __ - — _ — N — [ [—_
U = 100°20" = (100+ 60) (100+ 3) ( 5 ) ( 3 ) 130 £10
With this calculation in mind, the arc length formula (1 Jlydelds
lengthT) = (3017/540) - 12 = 3017 /45 ~ 21.01376419 cm.

Angle Arithmetic
One key feature of physical angle measurements is the statdralow, concerningub-angles

S2

LUy

S1

Figure 1.1.5

Given a physical angle’U, any rayp thatemanates from the vertex gfl and sits inside<U,
splits £ U into two physical sub-angles, called thesplits (or p-sub-angleyof £ LI.

As a matter of convention, if the sides gll ares; ands, (as shown for instance in Figure
1.1.5), the twap-splits of £ U are identified as follows:

e £, is the physical sub-angle enclosed by, p;

e Al is the physical sub-angle enclosed by p.

Angle Addition Principle

With £U andp as abovethe measures of twe-sub-anglex'U,;, LU, add up to the measure
of the angle<U: L N
UW+U=U (1.1.21)

This propertydoes not depend on the angle measure.unit

CLARIFICATION. Based on the Angle Addition Principle, we see that if an angll is split
into sub-angles'U; and£U,, and if we know two out of the three measutés U,, U, then the
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third measure can obviously found either doingaafditionas in (1.1.21), or aubtraction for
instanceU, = U — U,;.

Of course, when the angle measures (whether they use t@greeas, or radians) are expressed
as decimals or fractions, additions and subtractions aetegerform. The only type of arithmetic
that is a little “tricky” is the one that uses the DMS systemwihich case we use the following
guidelines (see Examples 1.1.11, 1.1.12 and 1.1.13 below):

e Always try to add/subtradike units(degrees with degrees, minutes with minutes, seconds

with second).

e When an addition results in large numbearry “chunks” of sub-units to units.

e When a subtraction results in a negative number of subsurotsowa “chunk” of sub-units

from units.

Example 1.1.11. Add: 30°50'48" 4 89°42'15".

Solution Set up our addition in columns:

30° 50" 48"
+  89° 42" 15"
= 119° 92" 63"

Although the final answer looks OK, some quantities exceedusual cap: when we look at
seconds, we sa8”, which exceeds0”, so we can carry 60" chunk, by replacing3” = 1’ + 3",
so now the above result reads:9°(92 + 1)'3” = 119°93/3". Likewise, when we look at minutes,
we now sed3’, which exceeds(’, so we can carry &0’ chunk, by replacing3’ = 1° + 33, so
now the above result readsi19 + 1)°33'3"” = 120°33'3”, which we regard as @eananswer

Example 1.1.12. Subtract:100°20"10” — 65°43'21".

Solution We would like to subtract seconds from seconds, and mirftdes minutes. When
we look at seconds, we see that we would get a negative nustber will borrow60” = 1’ from
the minutes, so now our subtraction looks like:

100°20'10” — 65°43'21” = 100°(20 — 1)'(10 + 60)" — 65°43'21" = 100°19'70" — 65°43'21".

This looks fine, as far as the seconds are concerned, buthetminutes we have the same prob-
lem, so we will borron60’ = 1° from the degrees, so now our subtraction looks like:

100°19'70” — 65°43'21” = (100 — 1)°(19 + 60)'70" — 65°43'21" = 99°79'70" — 65°43'21".

and all is fine, so we can subtract in columns:

99° 79" 710"
— 65° 43" 21"
= 34° 36" 49

Supplements and Complements
Two special types of angle pairs are identified, dependinpersum of their measures.
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Suppose two physical angledl,; and<U, are given. L

(A) We saythak'U; and«<U, arecomplementary; if thethe suml; +U, of their measures
if equal to the measure ofreght angle L

(B) We say thak'Ul; and<U, aresupplementary, if the the suml; + U, of their measures
if equal to the measure ofstraightangle

CLARIFICATIONS AND ADDITIONAL TERMINOLOGY. In case A), we say that(ll, is com-
plementary to LU, (and vice-versa{ll, is complementary ta’ll;). Likewise, in caseq), we
say that<ll, is supplementary to LU, (and vice-versas U, is supplementary ta'll,).

In practical terms, finding complements or supplements antnimuan angle subtraction:

(A) To find the measure of @@mplemenof an angle<U, we subtractits measurél from the

measure of a right angle R
(B) To find the measure of supplemenof an angle<U, we subtractits measurée.l from the
measure of a straight angle
(Depending on the unit we use, we can look up the measure oigihieor straight angle in Table
1.1.2)

Example 1.1.13. Find the measure of an angle that is complementary to an witjﬂeﬂ =
75°26'33".

Solution What we need to compute is, of course, the difference

90° — 75°26'33".

We will clearly need to borrow0’ and60”, so we will simply re-write (in “one shot”) our subtrac-
tion as:
90° — 75°26'33" = 89°59'60" — 75°26'33",

which we can then easily compute in columns:

89° 59" 60"
— 75° 26" 33"
= 14° 33 27

When computing complements, we must of course assume thabhéasure of the angle we
start with does not exced@d°. Likewise, when computing supplements, we must of courseras
that the measure of the angle we start with does not ext&ed With these observations in mind,
we isolate the following type of angles:

(A) A physical angle<U is said to beacute, if its measurell is positive and less than the
measure of a right angle
(B) A physical angle<U is said to beobtuse if its supplement is acute

This means that in terms of the measureand the unit we use, the above two types can be
chracterized as follows.

Unit “4AU is acute” “4AU is obtuse”
used means: means:
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Turn | 0turn(s)< U < Tturn| §turn< U< 5 turn
Radian 0<ﬂ<g g<ﬂ<7r
Degree 0° < U < 90° 90° < U < 180°
Table 1.1.3
Exercises

The list of problems included here is quite short. An abundapply of exercises is found in
the K-STATE ONLINE HOMEWORK SYSTEM.

1. Find the area of a sector subtended by a central anglé® a$ a disk of radiu® cm.

2. Given that a circle has circumferent® ft., find the length of a circular arc subtended by

3.

a central angle that measu%s[radians].

The figure below depicts one of the terminals at Kansas Qitgrihational Airport. The
two yellow circular arcs mark two sidewalks: the outer sidbws immediately outside the
terminal; the inner sidewalk is across the (circular angedtaround the parking lot.

T Y iy 0l ) B

When walking from one terminal gate to another terminal gas¢h positioned on the outer
sidewalk), you have two options:

(A) walk along the outer sidewalk, or

(B) cross the street, walk on the inner sidewalk, then crossttlet again.
Here “crossing the street” means to move along the radiubeotircles, so whether you
choose optionK) or option @), both sidewalk arcs will be subtended by one and the same
physical angle. Your task is to decide, given the radian mnegsof this physical angle,
which is your shortest walk. (NT: Letr and R be the radii of the inner and the outer cir-
cles. Compute the distance traveled in both scenariostnmstefd, » and R, and compare.
You will find that your answer does not dependroand R!)

The following group of exercises deals with the old fashtbolck, which has two hands: the
hour hand and the minute hand.
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4. How many degrees does the minute hand travel in one hou? nkbmy degrees does the
hour hand travel in one hour?

5. At 12:00 both hands overlap. What are the next three tintesvhe two hands overlap?

6. At 3:00 both hands are pependicular. What are the nex timees when the two hands are
perpendicular?

7. At 6:00 both hands form a straight angle. What are the megettimes when the two hands
form a straight angle?

1.2 Right Triangle Trigonometry

A right triangle is a triangle in which one of the angles is isight angle The main features
of right triangles are summarized as follows.

Basic Properties of Right Triangles
I. A right triangle hasexactly one right angle
Il. The sidefacing the right anglereferred to as theypotenuse is thelongest sidef the
triangle.
lll. The sides of the right anglare called théegsof the right triangle.
IV. Pythagoras’ First Theorem. No matter what units we use, the lengtks,, leg,,
hypotenusgof the three sides of a right triangle satisfy the identity:

leg; + leg; = hypotenuse (1.2.1)
V. The two angles facing the legs artemplementaryln particular, both these angles ar¢
acute
@

&>
NS

O

') leg

Figure 1.2.1

CLARIFICATION. Concerning property V above we have following importamdaore com-
plete) statementAny acute angle can be made part of a right triangle.
The Trigonometric Ratios

AssumeV is a vertex in a right triangle’, so that<V" is one of the acute angles i&r. In
relation to£V/, the twolegsof the triangle are identified as follows.
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&
o’\é\
Q

N opposite

leg

’ N

adjacent leg
Figure 1.2.2

(i) The legfacingV is referred to as thkeg opposite toLV'.
(i) The other leg of the triangle — the leg thabntains the verteX, is referred to as thég
adjacentto (V.

With this set-up in mind, th&igonometric ratios oK'V are defined as follows:

Assume, as above, that is a vertex in a right triangle’, so that<V' is one of the acute
anglesing.

leg opposite taV
hypotenuse
hypotenuse
leg adjacent ta(V'°
leg opposite ta'V
leg adjacent ta(V'"

(A) Thesinus ratio of LV is:

(B) Thesecant ratio of £V is:

(c) Thetangent ratio of £V is:

The Trigonmetric Ratios as Functions

Usingsimilarity properties of right triangles, one can easily derive thietaihg two important
statements.
l. If two acute angles (in two right triangles) as®ngruentthen theirmatching trigonomet-
ric ratios are equal
II. Conversely, if two acute angles (in two right triangles) @av pair of equal matching
trigonometric ratiog then they areongruent
When reading carefully statement |, we see that the trig@iooratios in effeconly depend on
the measures of the acute angkor this reason, we can view themrasnerical functionsTo be
more precise, we can set up the following definitions andtrosts.

FACT A. If £V is some acute angle (in some right trianglg, then:

(A) the numerical value of thsinus ratio of<1” only depends on the meastire and we
denote it bysin(f/);

(B) the numerical value of theecant ratio o1 only depends on the measure and we
denote it bysec(\A/);

(¢) The numerical value of theangent ratio of<{}" only depends on the meastire and
we denote it bytan (V).
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CLARIFICATIONS. Assuming that the angle measure is presented numerﬁ&&y@, we will

~ ~

feel free to writesin(6), sec(0), tan(0), instead okin (1), sec(V), tan(V'). For instance, if we use
radiansand say, we preseft = ™ we will simply write sin (E) sec (E> tan (f) but when
’ 4’ Co\4) T4 4/’

we usedegreesand we present the same angle measufe-asi5°, then we will writesin (45°),
sec (45°), tan (45°).

Statement Il above can now be re-phrased as follows

FACT B. If 8 and@’ are twoacuteangle measures, then the following equalities are equiy-

alent:
(A) sin(@) = sin(0'); (B) sec(6) = sec(0');

() tan(@) = tan(@'); (o) 6=29"

The Trigonometric Co-Functions

So far, we have only introduced three trigonometric funticsin, sec, andtan. There are
three more functions, which are built according to the folltg scheme:

If function is any one of the functionsn, sec, or tan, its associatedofunction is defined
as

cofunction(Angle) = function (complement ofAngle).

The short-hand notations for the-functions associated to our three trigonometric functiops
are as follows: 4) cosinis denoted byos (B) cosecis denoted bysg (C) cotanis denoted
by cot.

CLARIFICATION. If we have a right trianglé\ V1V 12, with the right angle af?, then according
to the above rule, the trigopnometric cofunctiongoére simply:

We now havesix trigonometric functions of any acute angle measure. Wrappp all we have
learned so far, these trigonometric functions are definddlksv.

Geometric Definitions of Trigonometric Functions for Acute Angles

Assume<'V is anacutephysical angle, in some right trianglé, which has measuré = 6.
The six trigonometric functions af are given by the following ratios:
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) leg opposite talV leg adjacent ta’'V/

sin(@) = ; cos(0) = ;
hypotenuse hypotenuse

) = hypotenuse ) = hypotenuse

%) = leg adjacent tal V'’ ) = Jeg opposite tad V'’

tan(8) = leg opposite talV" cot(8) = leg adjacent ta/V/

~ leg adjacent ta/V’ ~ leg opposite taV'"

opposite
leg

adjacent leg
Figure 1.2.3

It is pretty clear that Fact B stated earlier in this sect®also true if we include co-functions.
In other words, we now have the following statement.

The Fundamental Theorem of Trigonometry for Acute Angles

If 8 is anacute anglaneasure, then the value ofietrigonometric function of completely
determine®, and consequently the values of the other five trigonomftnictions of9.

“Familiar” Values of Trigonometric Functions

Given some acute angle measutehow do we go about tcomputeits six trigonometric
functions? Using the Geometric definition, the most reatlenaay to do this is tdouild a right
triangle, in which one of the acute angles has mea#®ur€This is always possible, with the help
of the Acute Angle Theorem.) In the examples below we willdai this method, for computing
the trigonometric functions of three “familiar” angles.

Example 1.2.1. Consider the acute angle which measurgs When we build a right triangle
which has one of its acute angles of measlire the other acute angle will also measug, so
any such triangle will be aisosceles right triangleUsing Pythagoras’ First Theorem, it is easy to
derive the following well known fact:

In anisosceles right triangléhelegs have equal lengtland furthermore,

hypotenuse= v/2 - leg, = V2 - leg,.
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In particular, if we denote the leg(s) lBythen an easy calculation of the six ratios yields

l 1 14 1
sin(45°) = —— = —; cos(45°) = —— = —;
(45°) = = s eosli) = o =
sec(ds®) = 2L v el = 2L v
tan(45°) = % =1; cot(45°) = g = 1.

Example 1.2.2. Another right triangle that is very dear to us is the so-chHhelf of an
equilateral triangle in which the acute angles measufg and60°. It is not hard to see that, the
sides of such a triangle obey the following pattern:

If we denote the letpcing the30° angleby /, then:
e the legfacing the60° angleis v/3 - ¢, and
e thehypotenusés 2 - /.

So if we fix such a triangle, and its acute angles are denotetbgnd <1V, labeled such that
V = 30° andWW = 60°, then:

leg opposite taV = leg adjacent t&’W = /;
leg adjacent ta’V = leg opposite todWW = /3 - ¢,

and then an easy calculation of the six ratios yields

14 1 i 3
sin(30°) = cos(60°) = 5.7 =3 cos(30°) = sin(60°) = \é_g—g = g;
2./ 2 2.0
sec(30°) = csc(60°) = m = ﬁ; cse(30°) = sec(60°) = - = 2;
14 1 3-/
taﬂ(300> = COt(6OO) = m = ﬁ7 tan(60°) = COt(300> = \/77 = \/§

The “Holy Grail” of Trigonometry

We use the above title to designate a collection of formutkages that will ultimately allow
us to compute values of trigonometric functions. Startnogf this section, we are going to adopt
the following:

“Lazy” Notation Conventions

Whenevethere is no danger of confusion
I. Parentheses are removed from the notations involviggmometric functions, so instead
of writing “sin(@)” we simply write “sin 6.”
II. Whenever we raise the value of a trigonometric functmaiteger powep > 2, we put
the exponent immediately after the function, so insteadrifrvg “(tan 6)” we simply
write “tan” 6.”
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@ The “lazy” power notation Il is only reserved fpositive exponents
The first formula package is derived directly from the Geao@efinitions.

The Reciprocal and Ratio Identities

1 1
0= ; 0=——;
hee cos @ e sin O
in O 1 0 1
S1In o0 = ; cos = 0
csc @’ sec @’
tan @ cot @
sin @ = o cos 0 = 2
1n sec@’ csc @
sin O cos 0
tan @ = 2 cot 0 =
. cos @’ sin@’
1
ot cot @’ o tan

Using these identities, we can easily derive our next foenpalckage which expressed various
functions agroducts

Product Identities

sin@ = tan@ - cos 0, cos@ = cot @ - sin 0,

tan@ = sin 0 - sec; cot @ = cos@ - csch.

Our next formula package comes directly from Pythagoragofém, and is named after him.

The Pythagorean ldentities

sin?6 + cos’0 = 1 (1.2.2)
1 + tan’@ = sec’6; (1.2.3)
1 + cot?@ = csc?6. (1.2.4)

CLARIFICATIONS. The identity (1.2.2) follows immediately from Pythagdr&sst Theorem
by dividing both sides of (1.2.1), which gives:

leg, 1 leg, 1°
{hypotenusl + {hypotenus =1 (1.2.5)
2
Upon multiplying the above identity bw%gelnw? we get:
2 2
1+ ['e_gz] _ [MT | 126
legy leg,

which will clearly give (1.2.3) and (1.2.4).

The Pythagorean Identities are often employed in the do@tiputations that are based on the
following formula package.
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The Derived Pythagorean Identities for Acute Angles

Assumingd is anacute anglemeasurement, the following equalities hold:

cos@ = /1 —sin’6; sin@ = v1 — cos? 0,
secO = v/1+ tan?0; csc @ = /1 + cot? 0;
tan @ = vsec? 0 — 1; cot @ = Vese? 0 — 1;

?} The Derived Identities are obtained from the Pythagoreantltles by adding or subtracting
terms from both sides. For example, if we subtract @ from both sides of (1.2.2) we would get

cos’@ =1 —sin’ 0. (2.2.7)

If we want to solve forcos 8, we see that the type of equation we are dealing with is a power
eqguation of the form
??2 = number (1.2.8)

which in general haswo solutions: 7 = -++/number so in principle, the correct way to solve

(2.2.7) would be:
cos@ = +4/1 —sin? 0.

However, since we only limit ourselves &muteangles,cos @ will be positive thus the only valid
solution will be the one that uses thesign. BoTTOM LINE: As presented here (withott), the
Derived Pythagorean Identitiese valid only for acute angles!

The same phenomenon (when the only valid solution of an exjuiite (1.2.8) is the one with
+ sign) occurs when we deal with the following geometric vamsiof the above identities.

The Derived Geometric Pythagorean Identities
hypotenuse= 1/leg; + leg;; (1.2.9)

leg, = \/hypotenusé— legs; (1.2.10)
leg, = \/hypotenusé— leg;. (1.2.11)

Computing Values of Trigonometric Functions

The main reason the “Holy Grail” is so significant for us is fhet that it allows us the solve
the following type of question.

Basic Trigonometry Problem. Givenoneof the valuesin 8, cos 8, tan 8, cot 0, sec 8,
csc 0, find theother five values

Presently, we will address this question under the additiassumption that is anacute angle
measure.

CLARIFICATIONS. Of course, by the Fundamental Theorem of Trigonometry fout& An-
gles, we know in fact that one of the six values listed abowesdn factdetermined completely



20 1.2. RIGHT TRIANGLE TRIGONOMETRY

but at this time we do not know exactly how this is done. The wayshould understand this
statement at this point is to simply say thiattowing one of the valuesn 0, cos 6, tan 8, cot 0,
sec 0, csc 0, for an acute angle measué is as good as knowing itself. We regard this type of
thinking as describing anglesiplicitly. So if you are told for instance thats & = 0.7, you know
pretty much everything abo#@t except possibly for the value éfitself. However, what you know
aboutd is enough for computing all other five values of the trigontmadunctions of6.

Depending on personal taste and preference, the Basicribmgetry Problem (for acute angle
measures) can be solved by two methods.

Algebraic Method for Solving the Basic Trigonometry Problem for Acute Angles

I. The value of one of the unknown five functions is the reagait@f the value of the given
function. Compute it!

Il. Using either the given value, or the one computed in thevious step, compute the
value of another one of the unknown functions, using one @fkrived Pythagorean
Identities.

[ll. Upon completing steps | and Il you would have the valuetheee (of the six) trigono-
metric functions. The remaining three values are obtairgdgueither the Recipro-
cal/Ratio ldentities, or the Product Identities.

. 5 _—
Example 1.2.3. Supposél is an acute measure angle, aidd = —. We will find the
remaining five values, using the three steps from the Algeiathod.
. . . . . 1 13
I. Using reciprocals, we immediately findc 0 = — 0= 5
Sin
Il. Using the derived Pythagorean Identities, we can comput

cos @ = \/1—%11120—“1— 13

169 25 \/169 25  ju4 Vi 12
169 169 169 169 /169 13

lll. Find the remaining three values using reciprocals ardipcts:

1 13

sec @ = = _:

nee cos@ 12’
tan@ =sin @ - sec O = EE = ﬂ = _—:
13 12 13-12 12

‘0 1 12

cot@ = = .

tan O 5)

The second method for solving our problem is based on the gemmapproach, which requires
that you “cook up” a triangle.
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Geometric Method for Solving the Basic Trigonometry Problam for Acute Angles

I. Use the given value of one trigonometric functionéto build a right triangle7, in
which one trigonometric ratio of one acute anglé” matches the given value. Your
triangle will have two sides already given by matching. (Bg Fundamental Theorem
of Trigonometry, this angle is guaranteed to have meaguref!)

II. Find the third side in the right trianglg’.

[ll. Compute all other five missing values using the Georsdbefinition, which presents
each one of them as a trigonometric ratio.

Example 1.2.4. Let us redo Example 1.2.3 using the Geometric Method.
I. We need to build some right triangl# which has an acute angi&/ with sinus ratioequal to

%. By the definition of the sinus ratio, we can certainly builils a triangle, by prescribing

leg opposite talV =5
hypotenuse= 13
leg adjacent taXV = (unknown)

Il. Using the Derived Geometric Pythagorean Identitieslioivs immediately that
leg adjacent ta{V = /132 — 52 = /169 — 25 = V144 = 12.

[ll. Using the Geometric Definitions, the missing values are

cos(0) = leg adjacent ta{V 12 sec(8) = hypotenuse 13
~ hypotenuse 13’ 77 leg adjacent todV 12

0) = hypotenuse 13 tan(0) = leg opposite tadV. 5
%) = leg opposite tacV 5 MY = Yeg adjacent Vv~ 12’

_ leg adjacenttXV. 12

t(0) = = —.
cot(0) leg opposite talV 5

YOUR CALL! When comparing the two methods, the only difference is thatroethod used
fractions, while the other one did not. Other than that, withmethods we ended playing with the

same numbers25, 169, 144 and their square roots. The author of this text prefers tlyelbdaic
Method.

@ In the preceding Example(s) all answers were left in fractarm. These are the preferred
forms, since they givexact valuesAs we have seen already when we computed the trigonometric
functions of the “familiar” angles, we also used exact value that case using radicals.

Example 1.2.5. Supposed is an acute measure angle, andd = 3. We will find the

remaining five values, using the three steps from the Algeldathod. (If you are so inclined, try
it also with the Geometric Method!)
1 1

I. Using reciprocals, we immediately finds 6 = 0= 3
Sec
Il. Using the derived Pythagorean ldentities, we can comput

tan@ = Vsec20 —1=v32 - 1=/9—1= 8 = 2V2.
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lll. Find the remaining three values using reciprocals atibs:

0 1 1
cot O = =
tan@  24/2’
0 tan@  2v/2
sin @ = ="
sec @ 37

1 3
sch = = —.
ose sin@ 22

Exercises

In Exercises 1-6 we assume thiati BC' is a right triangle, with the right angle at You are
asked to find all six trigopnometric functions &f andC, depending on the given information in
each Exercise. Usexact values(We also assume a length unit is fixed, so all lengths arengive
“lazy” notation, without specifying this unit.)

1. AB =3, AC = 4.

2. AB=3,BC =4.

3. AC =3,BC =4.

4*. AB =1, BC' = x, with 2 > 1. Your answers should be algebraic expressions in

5. BC =1, AB =z, with 0 < = < 1. Your answers should be algebraic expressions in

6*. AB =3, AC = z, with z > 0. Your answers should be algebraic expressions in

In Exercises 7—14 we assume thas an acute angle measure. Based on the given information
in each Exercise, you are asked to find all six trigonometmcfions ofd. Useexact values

7. sin@ = g
)
8

. cos = —.

8. cos T
24

9. tanf = —.
an 7
10. cot @ = 5.
)

11. secO = —.
sec 3

12. csc @ = /5.

1 . . .
13*. secO — tan® = —. (HINT: Factorsec’0 — tan?6. and “play” with the Pythogorean

Identities. You should be able to get the valuedarf + tan 6.)
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11 . . . . L
14*. sin@ + csc O = 10" (HINT: Write the given information as an equationsin 6.)

1.3 Solving Right Triangles

In this section we illustrate how Trigonometry provides ughveffective tools for solving a
key problem in triangle geometry. With what we have learneths at this point we are only able
to treat right triangles. The case of general triangleslvéltreated in Chapter 3.

The Problem

What we call thesix elementsf a triangle are:

(A) thephysical lengthsf the three sides;

(B) themeasure®f the three angles.
With this terminology, tosolve a trianglemeans tdind all its six elementsWhat will be made
pretty clear here (as well as in Chapter 3, where we geateraltriangles) is that the following
statement is always true.

Triangle Solving Principle

A triangle can always be solved, givdmeeof its elementsat least one being the length of
a side

CLARIFICATION. When dealing withright triangles, one element — the right angle measure —
is already given. As it turns out, in this case, it is not intfaecessary to specify all three sides,
because using Pythagoras’ Theorem, knowing two of thenmaatioally gives the third one. So,
when dealing with right triangles, the above statement &githe following concrete formulation.

Right Triangle Solving Principle

A right triangle can be solved, in either one of the following cases.
I. The length of one side, together with the measure of one angieare given.
Il. The lengths of two sidese given.

Case | will be referred to using the phraSele-Angle case Il will be referred to using the
phraseSide-Side

The methods employed in solving right triangles depend ercése (Side-Angle or Side-Side),
as we shall see shortly. However, there are a few commondsyeehich we summarize in the
following list of suggestions.

TIPS:

(A) Once two sides are found (or given), the third one can be fasiug the Derived Ge-
ometric Pythagorean IdentitiegSee formulas (1.2.9), (1.2.10) and (1.2.11) discuss
in Section 1.2.)

(B) Once the measure of one acute angle is found (or given), tlasume of the second

d

(D
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angle can be found usingpmplementgIf we use degrees, we subtract fr@of; if we
use radians, we subtract fro7FTn)

(c) For all other calculations involving trigonometric funotis, we use their Geometric
Definitions as ratios. Thpreferredfunctions aresin, cos, andtan.
(D) For all numerical computations, we use the six basic calmrldunctions: ,

tan tan'l‘.

cos?!

‘si nt}|cos| : :

Both here, as well as in Chapter 3, we will use the following:

LABELING CONVENTION. The vertices of a triangle are labeled using uppercasedettech
asA, B, C, etc., thus the angle measures are writterd a8, C', etc. The lengths of the sides are
labeled using lowercase letters, sucluds c, etc., according to the following letter-matching rule:
Any lowercase letter designates the length of the side Hitasfthe vertex labeled by the matching
uppercase letter

C

C

Figure 1.3.1

For example, if we have a triangle ABC', the lowercase letters denote the physical lengths
BC,b= AC andc = AB.

The Side-Angle Case
Given one side and one acute angle, we solve a right triarsghg the following steps.

Method for Solving the Side-Angle Problem for Right Triangles

I. Find theother acute angl@isingcomplements
Il. Find theunknown sideausing aproportion equationgonstructed using the Geometrig
Definition oftwo (preferred) trigonometric functions of one of the twaitgcangles
whichinvolve the given side and an unknown side
II'. If desired, find onlyone unknown sidasing step Il, then find theecond unknown side
using Pythagoras’ Theorengsee formulag1.2.9) (1.2.10)and (1.2.11)from section
1.2.)

CLARIFICATION. When working on Step I, we will encount@roportion equation®of the
form “ratio = numbey’ in which the unknown quantity may be either the numeratorthe
denominator. In order to solve such equations, we will useairthe following “recipes” that use
equivalent forms of proportions
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=
A. To solve an equation of the forn;é = number we multiply: 7 = # - number

B. To solve an equation of the forr# = numberwedivide 7 = i .
! number

Example 1.3.1. SupposeNABC hasA = 90°, B = 40° anda = 2 cm.

c =7

Figure 1.3.2

We solve the triangle, following the two-step method. R R

I. The other acute anglgC’, is complementary ta/ B, so its measure is¢' = 90° — B =
90° — 40° = 50°. R

Il. To find the remaining two sidesandc, we seek twdrigonometric functions oB (among
the preferredones), to which the given side“contributes.” At this point, we note that:

¢ the given side: = 2 cmis facing the right angleg A, so it is thehypotenuse

e the unknown sidé is theleg opposite ta( B;

e the unknown side is theleg adjacent to{ B.
Based on these observations, the functions we identify are

~ C
and cosB = —,

sin B = —
a a

SO our proportion equations are:
b in40° and < 40°
— = SI1n — = COS .
2 2

Using equivalent forms of these proportion equations, wadadiately get

b=2-sin40° ~ 1.285575219 cm,
c=2-cos40° ~ 1.532088886 cm.

These calculations were done on a TI-84 calculator, on wivelyped:

2xsin(40)

1. 285575219
2xcos(40)

1. 532088886
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@ Make sure you set your calculator to work in degrees!
Example 1.3.2. SupposeNABC hasA = 31°23/, B = 90° anda = 5.6 cm.

31°23

b ="
Figure 1.3.3

We solve the triangle, again following the two-step method.

|. The other acute angl€C’, is complementary ta{ A, so its measure isC = 90° — A =
90° — 31°23' = 58°37".

Il. To find the remaining two sidesandc, we seek twdrigonometric functions oft (among
the preferredfunctions), to which the given side“contributes.” Note that:

¢ the given side: = 2 cm is theleg opposite tad A

¢ the unknown sidé is facing the right angl& A, so it is thehypotenuse

e the unknown side is theleg adjacent tad A.
Based on these observations, the functions we can use are

sin A = % and tan A = 2

)
>

C

SO our proportion equations are:

5.6 5.6
5 = sin(31°23") and — = tan(31°23').
) c

Using equivalent forms of these proportion equations, waadiately get

5.6
b= — 27~ 10.7534868 cm
sin(31°23) 7 :

5.6

= 22 9180276592 cm
“ 7 tan(31°23) ’

When doing these calculations on a TI-84 calculator, wedype

5.6/sin(31+23/ 60

)
10. 7534868
5.6/tan(31+23/ 60

)

9. 180276592
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Notice that, in order to avoid error compounding, each datmn was carried on in “one shot,”
so for the trigonometric functionsif andtan) of 31°23" were we typedsi n( 31+23/ 60) and
tan(31+23/60).

The Side-Side Case

When solving a right triangle given two sides, we will haveuse three new calculator func-

tions? ‘si nlllcos 'ty and. The way these calculator functions work (which is consis-
tent with the Fundamental Theorem of Trigonometry for Adtgles) is summarized as follows:

THE INVERSE TRIGONOMETRIC CALCULATOR FUNCTIONS. Assumenumber

IS some positive number.

(A) If number< 1, the result oﬁsi n-Y{ number) \ is the unique acute angle measure
which is a solution of the equation:

sin 7 = number. (2.3.2)

(B) If number< 1, the result oﬂcos*( number) ‘ is theunique acute angle measure
which is a solution of the equation:

cos 7 = number. (1.3.2)

(c) The result oft an Y numbe) \ is theunique acute angle measure, which is a solutign
of the equation:

tan 7 = number. (1.3.3)

@ StatementsA) and @) are only true, if number< 1. This issue will be revisited in
Chapter 2, where these calculator functions will be thohdyighvestigated, along with the basic
trigonometric equations (1.3.1), (1.3.2), (1.3.3).

Given two sides, we solve a right triangle using the follogveteps.

Method for Solving the Side-Side Problem for Right Triangles

I. Find one of theunknown acute angleby:
e computing one of its (preferred) trigonometric functionaasatio put together using
the given sideghen
e solve the associated basic trigonometric equation — onkeesfdrm(1.3.1) or (1.3.2)
or (1.3.3)— using the appropriatewverse trigonometric calculator function
[I. Find the remaining elements (the other acute angle and ting #ide) using the steps
given in theSide-Angle Problem

Example 1.3.3. SupposeNABC hasA = 90°, a = 12.3 cmandb = 7.5 cm.

1 On a TI-84, these functions are accessed us|ir2g\ID| sin | | 2ND| cos | and On other

brands instead , one uses th key.
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C
b=75cm
B c=" A
Figure 1.3.4

We solve the triangle, following the method outlined above.

l. The first given side is, which faces the right angle, so= 12.3 cmis thehypotenuseThe
second given side is= 7.5 cm, which is theleg opposite the acute anglé?, so using these two
sides, we can set

sin B = é = —7'5 ,
a 123
and then, using t function on the calculator (see below) we g%tz 37.57186932°.
Il. The other acute anglgC’, is complementary ta’' 3, so its measure is:

~

C'=90° — B ~ 90° — 37.57186932° ~ 52.42813065°.

To find the third side:, which is aleg, we can use (for a nice computation flow) the sine of the

angle@ which we just found
sin C' = 2,
a

which becomes 3
sin 52.42813068° = —
S111 O 123,
from which by cross-multiplication we get:

¢ =12.3 - sin 52.42813068° ~ 9.748846086 cm.

The three calculations above were done on a TI-84 by typing:

sin(7.5/12.3)

37.57186932
90- Ans

52. 42813068
12. 3*si n( Ans)

9. 748846086

Example 1.3.4. SupposeNABC hasC = 90°, « = 6 cmandb = 8 cm.
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B
a=6cCcm
A b=8cm ¢
Figure 1.3.5

Again, follow the method outlined above.
l. The two given sides andb are bothegs Sincea = 6 cm, which is theleg opposite ta A,
andb = 8 cm, which is theleg adjacent tod A, so using these two sides, we can set
~ a 6
tan A= - ==
an 5 3’
and then, using tde an™!|function on the calculator, we gét: 36.86989765°.
Il. For a change, we choose to find the missing sidsing the Pythagorean formula (1.2.9):

¢ = hypotenuse- +/leg,2 + leg,2 = V62 + 82 = v/100 = 10 cm.

The other acute angléB, iscomplementary ta’ A, so its measure is:

~

B =90° — A~ 90° — 36.86989765° ~ 53.13010235°.

Applications

With the techniques we developed up to this point, we are niol@ 8 solve a variety of
problems, many of which have real life applications. Theetypf problems we are going to
explore are what young students describe as “word problebnsce the phrase “word problem”
appears a bit inappropriate to describe what is going on, refeipto replace it with the phrase:
“practical problem.”

TIPS/STEPS FOR SOLVING PRACTICAL PROBLEMS.

(A) Draw a picture or diagram.

(B) Name (using symbols) all unknown quantiti€on’'t be modest! Use a lot of letters!

(c) Write downall algebraic relations that link the given and the unknowmaqgtities
Many of these relations are obtained ibgntifying all the right triangleghat the pic-
ture/diagram produces. Upon completing this step, youlshmave only anALGEBRA
PROBLEM to “play with.”

(D) Make a plan on how to solve yoALGEBRA PROBLEM, and execute your plan!

() Carefully write down you answegs demanded by the probler{For instance, if you
are asked to find Eength specify the units!)
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Example 1.3.5. A radio 100 ft tower tower is anchored with several wires, ehhare attached
to the top and form &5° angle, as shown in the picture below (where only one anchsinasvn;
in real life, at least three such anchors are needed):

Figure 1.3.6

We are asked to determine the length of each wire, as welleadifitance from the base of the
tower to the point where the wire(s) are anchored in the gitoun

Solution As the tower is vertical, the above diagram reveals a riggniggle, which has an acute
angle (which we may calk'V, if we like) measuring5°, to which the three sides are related as
follows:

e the sideh = 100 ft (the height of the tower) represents thg adjacent tadV;

¢ the side labeled (the distance from the base of the tower to the anchor poitt@ground)

represents thieg opposite ta(V;

e the side labeled (the length of the wire) represents thgpotenuse R
Clearly, this looks like a Side-Angle Problem, so we can wettrigonometric functions o’ =
35° as

cosV = ﬁ and tanV = g,
w h

so when we replace all given numbers we get OUGABRA PROBLEM:

100
—— = cos35°
w
(1.3.4)
d tan 35°
— =tan
100

All we need now is to solve the AGEBRA PROBLEM, which should be pretty easy in this situation:
we findw by division; we findd by multiplication:

w = 100 ~ 122.0774589 ft.
cos 35°

d =100 - tan 35° ~ 70.02075382 ft.
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So our complete answer isie need approximateli22 ft. for each wire anchor, and each wire is
anchored at abodv ft from the base of the tower

Trigonometry has numerous applicationsimveying Essentially what a surveyor is capable
to do is tomeasureanglesbetween variounes of sightand thelevel line

+ angle of elevation horizontal
<+ angle of depression (level) line

Figure 1.3.7

Depending on the position of the line of sight with respecthi® level line, the angles measured
are either called

e angles of elevationf the line of sight isabovethe level line, or

e angles of depressigiif the line of sight isbelowthe level line.

Example 1.3.6. Assume we have tower, on top of which a 20 ft antenna sits, @srsin the
picture below. From an observation point on ground levelweasure the angles of elevation to
the bottom and to the top of the antenna, and our measureneaiz6.6° and32°.

Flgure 1.3.8

Based on these two measurements, we can in fact computeheofieight: of the tower and the
distancey from the observation point to the base of the tower.

To see how we do this, we start off by breaking up our origirgre into two separate right
triangles, depicted below.

//’_l gj //!_lx -
26.6° 32°
) )
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Figure 1.3.9

The left triangle includes the elevation angle to the bottditihhe antenna, so we can write:

T tan26.6°. (1.3.5)
y

The triangle on the right includes the elevation angle tadipeof the antenna, so the leg opposite
to the32° angle is longer tham, because we must add (ft) that accounts for the height of the
antenna, so now we can write:
x 4+ 20
Yy

By transforming now both equations (1.3.5) and (1.3.6) gismultiplication, we reach our KGE-
BRA PROBLEM, which now looks like asystem of equations:

= tan 32°. (1.3.6)

r =1y -tan 26.6°
(1.3.7)
T4+ 20 =y - tan 32°

To solve this system we plan to do the following:
(i) Subtract first equation from the second, so we will eliateéx:. This will produce and
eqguation with only one unknown which we can solve.
(i) After we find y, we use the first equation to compute
Let us now execute the above plan. Upon subtracting firstteuitom the second equation, we
will get
20 =y - tan 32° — y - tan 26.6° = y - (tan 32° — tan 26.6°),

which looks like:20 = y - numbey so we can find, by division:

20
= ~ 161.1517137 ft.
Y tan 32° — tan 26.6° OLISITLST

Using this value, we can compute

20
=9 -tan26.6° = - tan 26.6° ~ 80.6987669 ft.
T=y-tan tan 32° — tan 26.6° an

These calculations above were done on a TI-84 by typing:

20/ (tan(32)-tan(
26.6))
161. 1517137
Ans xt an( 26. 6)
80. 6987669

(Notice that we did our computations in “one shot,” which ways a good practice, when we
need to worry about precision.)

So our complete answer ite tower is approximateli61 ft. tall, and the observer is at about
81 ft from the base of the tower
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Exercises

The list of problems included here is quite short. An abungdapply of exercises is found in
the K-STATE ONLINE HOMEWORK SYSTEM. Except for Exercise 1Gpund all your answers to
three decimal places

1. From an observation point 10 meters above ground levalyvagor measures the depression
angle to an object on the ground and the measurement 28diis Find the distance from
the object to the point directly beneath the observationtpoi

2. Suppose an amateur radio enthusiast wants to build a sadal tower, which needs to be
anchored at an angle dd°. As in Example 1.3.5, the angle referred to here is the angle
formed by the tower and the anchor wire. Given that, thredarscare needed, and 345 ft
of wire are available, how tall can the radio tower be?

3. From an observation point on the grould( yards from a launching site of a weather
balloon, an observer measures the angles of elevation @falfeon at two different times:
1 minute after launch, and minutes after launch. At thé-minute mark, the measure-
ment readd9.2°; at the2-minute mark, the measurement reads/°. Estimate the vertical
distance traveled by the balloon betweenthand the2-minute marks.

4. From an observation point on the ground, the angle of gtevéo the top of a very tall tree
measures0°.

20° 27°
10 ft

Figure 1.3.10
We movel0 ft further away from the tree and measure again the angleevfiBbn to the
top of the tree, which now shov23°. How tall is the tree?

5. Suppose you live in Manhattan KS and one day in June at 10 yom look at the Sun
(with some special protective glasses!) and measure itg afglevation, which read0°.
(Since the Sun is very very far, this reading will be the saareefrerybody in Manhattan.)
Assuming you have a 20 ft flag-pole, find the length of its skado

Right triangles appear naturally as “halves” of isoscetemngles, so they can be used for
solving such triangles. Exercises 6-8 illustrate this téghe.

6. Solve the trianglAABC, givena = b = 10 cm, andC = 40°. (HINT: Let M be the
midpoint of AB. Solve theright triangle AAMC.)

7. Solve the triangl\ ABC, givena = b = 7 cm, andA = 62°. (Same hint as above.)
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8. Solve the trianglé\ ABC, givena = b = 10 cm, andc = 8 cm. (Same hint as above.)

9. From an observation poiiit on the ground, you are looking at a spherical balloon of 1 foot
radius flying in the air, and you are able to measure the argjleden the lines of sight of
both “ends” as shown below.

Figure 1.3.11

P
If your measurement reads, how close is the balloon to you? Compute first the distance
PC from the observation point to the center of the balloon, thastract the radius.

With very few exceptions, when computing values of trigomdme functions of angles, we
always have to rely on a calculator. At the same time, we krie@#et are certain angles, such as
30°, 45°, and60°, for which we can compute the values of the trigonometricfiomsby hand
thus we can computexact valuesThe Exercise below outlines the calculation of &xact values
of the trigonometric functions af5°.

10*. Start with a squarel BC'D with side 1 inch. Then build an equilateral triangle ABP,
whereP sits inside the square. Lt be the midpoint ofAB and letN be the midpoint of

CD.
D N C
P
A M B
Figure 1.3.12

The three pointd/, N andP all sit on a line, which is perpendicular to battB andC'D,
so we have four right trianglesA AM P, ABM P (both being halves of the equilateral
triangle AAPB), andACNP, ADNP. R

() Find the angles of the isoscelésP BC'. (You already know the anglB = 30°.)

(i) Find the angles in the right trianglé PC'N.
(iii) Solve the right triangleA\ PM B. Useexact values

(iv) Find theexact valueof PN = M N — PM. Since you also know thaVC' = % you

can now also find thexact valueof PC'. R
(v) Write down theexact valuesf the trigonometric functions of the angléfrom A PC'N.



Chapter 2

Trigonometry Beyond Acute Angles

In this Chapter we extend the trigonometric functions belyaoute angle measures, and we
study them in detail, by focusing on their algebraic feature

2.1 Basic Notions of Analytic and Vector Geometry

In preparation for our next development of Trigonometry,iveed to set up the adequate Ge-
ometry framework, which in our case is what we @aflalytic Geometryln a nutshell, our goal is
to do Geometry in coordinates.

Rectangular and Square Coordinate Systems

We construct aectangular coordinate systemin the plane as follows:

¢ we fix two perpendicular lines, the intersection of which vaé theorigin;

e we “coordinatize” each lirfewith the help aunit length such thathe origin has coordinate

zero on both lines

With this set-up, our two lines are referred to as tberdinate axeslt is customary to designate
one of the lines as the-axis, and the other one as theaxis. (Itis up to us to decide what symbols
we use: we do not always have to stickit@andy. It is also up to us to decide which line is
responsible for which coordinate.)

Assuming all this set-up, theoordinatesf a point P in the plane are obtained as follows:

Y
b P(a,b)
a T
Figure 2.1.1

(A) We take the (unique) line through, which isperpendicular to the:-axis and pick up the
point where this line intersects theaxis. The coordinate on this point (on thexis) is
what we call ther-coordinate ofP.

2 To “coordinatize” a lineZ using a lengthunit means to establishia1 correspondendeetween the points a’
and the set of all real numbers, called twordinate correspondengso that for any two pointgl and B on.Z, we
have the equlitydist(A, B) = |(coordinate ofd) — (coordinate ofB)|units

35
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(B) We take the (unique) line through, which isperpendicular to the-axis and pick up the
point where this line intersects theaxis. The coordinate on this point (on theaxis) is
what we call they-coordinate ofP.

As shown in Figure 2.1.1, we specify both coordinates”ofising ordered pairsof real num-
bers. Conversely, given any ordered pairb), there is exactly one point that has this pair as its
coordinates.

?P The length units used for “coordinatizing” the axes needb®wthe same! For example,
when we use a graphing calculator such as the TI-84, in tlaadstrd” graphing mode, the length
unit on they-axis is slightly smaller than the one used onthaxis. (Roughly, in “standard” mode
the y-axis unit is2/3 of the z-axis unit.) In case when we use theme length unit on both axes
we say that our coordinate system isquare coordinate system(On a graphing calculator, this
can be obtained using the “square” display mode.)

Square coordinate systems are particularly useful, bedhey allow us to compuidistances

The Distance Formula in Square Coordinates

Assume a common lengthit is used for building esquare coordinate systen@iven two
points, written in coordinates a®; (2, y;) and P(z2, y2), the physical distance betwee
them is:

P1P2 = \/(1‘1 = 1‘2)2 = (yl = y2)2 units. (211)

Using coordinates, we can describe various sets of poirttseiplane usingquations in two
variables which are presented in the form

Expression inc andy = Expression inc andy.

For example, using the Distance Formula in Square Coorebnate have the following coor-
dinate equation focircles

The Equation of a Circle in Square Coordinates

Assume a common lengtimit is used for building asquare coordinate systenGiven a
point written in coordinates/ (a, b), and some positive real numberthe equation of the
circle of radiusr units, centered at7, is:

(x—a)*+ (y—b)*=r" (2.1.2)

Example 2.1.1. Assume we work in a square coordinate system. Consider tregieq:
42 — 8z + 4y* + 6y = 6. (2.1.3)

As it turns out, this equation does represent a circle. Tdeeethis comes about, we are going to
form two groups in the left-hand side of the given equation:

[42? — 8z ] + [4y° + 6y ] = 6, (2.1.4)
O] (n
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and to work on each of the two expressions individually, gsireeasy square completion identity

b\*> D
at2+bt+c:a<t+%> 1 (2.1.5)

In formula (2.1.5), the symbaldesignates somariable andD = b*—4ac is thediscrimininant
In (1), the leading coefficient i$, the middle coefficient is-8 (and the constant term i3, so
the discriminant ish = (—8)? = 64, so after completing the square, this expression is

—8\> 64 {
4o — 8x =4 (w+27> I =4(z—1)* -4, (2.1.6)

In (1), the leading coefficient i$, the middle coefficient is (and the constant term iy, so
the discriminant ish = 62 = 36, so after completing the square, this expression is

6 \? 36 3\? 9

When go back to (2.1.4) and replaa¢ &nd (1) using the above two identities, the equation
becomes:

3\* 9
4z —1)* —4+4 -] —= =6.
A1) —a+ <y+4> 1

(i)
9 : .
We now add! + 1 to both sides, so our equation becomes:

2
4@—1)%4(%%) :4+§+6. (2.1.8)

Will continue to transform the above equation, first by sifiypig the right-hand side

4+9+6—10+9—40+9—4g
4 N 4 4 4 4’

so now the equation (2.1.8) reads:

4(x —1)* + 4<y + §> _ Y (2.1.9)

4

Finally, when we divide all terms in this equation bywe get an equation that matches perfectly

with (2.1.2):
3\’ 49
—1)2 2 -
(x—1) + <y+4> 16

! ! !

@—af + b =

(2.1.10)
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7
1

. T .
We conclude that the equation (2.1.3) represectscée ofradlusZ units, centered at the point

Z <1, —§>.
4
P> Now work Exercises 1-6.

Directions and Vectors

Suppose you are driving in a big flat desert, where there an®axbs, but you have a good
vehicle that allows you to go from any point straight to anyestpoint. To know “where you are”
at any given time during your trip, you use a GPS device thdtsiow your position on a map.
The map, of course, is nothing else than a coordinate systenvever, when you want to go from
one point to another, you need a sensdiadction, for which you would need eompassAlthough
these notions are intuitively quite clear, the actual mathigcal definitions are quite elaborate.

. 3 . 49 49 /49
The above matchyields= 1,0 = ——, andr? = —, thusr = |/ — = —— =
4 16 16 /16

Assume we have two rays, andr,, which emanate from point8; and P,. We say that

these two rays arparallel, if they sit on two parallel lines?} and.%. If this is the case,

then consider the line7 that passes through, and P,, and depending on the positions o

the two rays relative to this line, we say that

e 7, andr, aredirectly parallel, if they sit on the same side of7 (see Figure 2.1.2);

e otherwise, if the two raysit on opposite sides o7, we say that; andr, areopposite
parallel (see Figure 2.1.3).

M 1 M

4
P P
| / . | .
T'/
0?1 P2 / P2 /

gg 32
Figure 2.1.2 Figure 2.1.3

We adapt the above definition to the case when the two rays sitasame lingas follows.

Assume we have two rays andr,, whichboth sit on one lineZ.
e We say that; andr, aredirectly aligned, if one of them is contained in the other
¢ otherwise, we say that the two rays amgosite aligned

CLARIFICATION. The figure below depicts four rays, r,, r3, 74, all sitting on a lineZ,
which can be paired as follows
(A) The raysr; andr, aredirectly aligned likewise, the rays'; andr, aredirectly aligned

_ 49 _ /49 . . N
8 Of course, the equatior? = 6 has two solutiong = + 6" However, since we are dealing wiglositive
guantities, we will only choose the sign.
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(B) The following four pairs of rays arepposite aligned(i) =, andrs; (ii) r; andr; (iii) 75

andrs; (iv) 7, andr,. -
T3 1

D S —_— S g
T4 T2

Figure 2.1.4

Of course, any ray is directly aligned to itself, and opposite aligned to thpagite rayr°r.

Assume two rays, andr, are given.

(A) We say that-; andr, point in the same direction, if either
e 7, andr, aredirectly parallel or
e 7, andr, aredirectly aligned

(A) We say thatr; andr, point in opposite directions if either
e 7, andr, are opposite parallelor
e 7, andr, are opposite aligned

@ We have not really defined whdtrection actually means! The correct way to define this
notion is to take what mathematicians oatjuivalence classesSince this concept is beyond the
scope of a traditional Trigonometry course, we are goingitcumvent it using the following
gadget.

A compassis acircle sitting somewhere in the plane. The main feature of the cesjthat,
for any rayr in the plane, there is exactly one ray on the compass, which points in the same
direction asr.

CLARIFICATIONS. A ray on the compagmeans, of course,ray that emanates from the center
of the compassAny such ray, is completely determined bpaint on the circle

N
R \Y
W E
T
S
x
Figure 2.1.5

The figure above depicts, in the presence sfjaare coordinate systera rayr, and the point
(denoted byR) which determines the direction efon the compass.

Following the traditional conventions used in topograghythe presence of aquare coor-
dinate systemfour particular directions are given special names a®\ia! the direction of the
positivez-axisis calledEast the direction of thenegativer-axisis calledWest the direction of
thepositivey-axisis calledNorth; the direction of thanegativey-axisis calledSouth
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Using a compass, we can also specify any direction usingdife’s bearing notation, which
specifies aracute angle measufeom either North or South directiotowardseither the East or
West direction. Four such directions are depicted in Figuies below.

N
N40°E
N65°W
65° 40
W E
591 50°
S50°E
S35°W
S
Figure 2.1.6

For example, when we specify6N°W, we mean the direction that starts North and tusss
towards West. What we basically doing is simpling the compass as a protractor

P> Now work Exercises 7-9.

Let us go back now to our story about driving in the desert tithaid of a GPS and a compass.
If our GPS device is “smart enough” to tell us not only whereawe on the map, but also how
to get from our current location to another point, then ma&ly the driving directionwill be
provided, for example, in the following forndrive 2 miles in theN65°W direction (Remember,
there are no streets/roads in the desert, so you only driggaight lines between points.) This
type of driving directions are what we caléctors The precise mathematical definitions are as
follows.

A vector in the plane is aoriented line segmerﬁ = 1@ The endpoints of the vector are
named as follows: the (first) point is called thesourceof the vector; the (second) point is
called thetarget of the vector. The lengthl 5 is called themagnitudeof the vector, and is
denoted by|| V||. A zero vectoris one that hagero magnitude

CLARIFICATIONS AND ADDITIONAL TERMINOLOGY. For anynon-zerovector v = /@
the ray thaemanates from the sourceand passes through the targstis referred to as theay
supported by v (denoted by- in the figure below).

< B
M
Figure 2.1.7

Thedirection of V is then the direction of this ray (defined, if we wish, usingpanpass). Using
this terminology we can always decide, for instance, if twaters point in thesame directionor
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in opposite directionsor if their directions form a certain angle, and so on, an@soWe will
agree tharero vectors point in any direction.

Two vectors are said to leuivalent, if they have theame directiomndequal magnitudes
We agree thatll zero vectors are equivalent

CLARIFICATIONS. The figure below depicts four vectors, all pointing in thensadirection
(they sit on several parallel lines, shown dotted).

Figure 2.1.8

Among these four vectors;,, v5 andv; are equivalent, but; is not equivalent to them: although
is has same direction, is is longer (it has greater magnjitude

@ When interpreting of vectors as “driving directions,” wdlwilways thinkequivalentvec-
tors asidentical objects. This point of view is incorporated in the followiligt of statements,
which summarizes the main features of vectors. (In Rule I@e@gnize the definition ofector
equivalencewhich is now substituted wittiector coincidencé

The Rules of the “Vector Game”

I. Two vectorscoincide if they have theame directiormandequal magnitudes
Il. “Driving” from a point P along a vectorv is the same aplacing a“copy” of v with
P as its sourceThetargetof this “copy” will be the“destination” of the drive

/'
P-/v7

Figure 2.1.9

lll. Given a pointP, the relative position of any poir® with respect toP is completely
characterized by the vecto¥ = P, which we refer to as thposition vector of)
relative toP.

IV. If we fix a pointO in the plane (which we may célhe origin if we like), then by taking
position vectorsrelative toO, we establish d-1 correspondendaetween theet of all
points in the plan@and theset of all vectorsThe position vector of the origif@ relative
to itself is the zero vector, which from now on we denote®y

Vector Arithmetic
Vectors can be stretched and reversed by devising the fioigpaperation.
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Scalar Multiplication

AssumevV is avector, andt is somereal number We define the-multiple of v to be the
unique vectoiw, characterized as follows:
(A) Themagnitudeof W is:

%] =1t - |71

(In particular, ift = 0, thenw is the zero vecto .)
(B) Thedirectionof W is, defined according to thegn of:

e if ¢ > 0, thenw hassame direction as/;

e if t < 0, thenw and v haveopposite directions

e if t =0, thenw hasany direction(because it is the zero vectﬁ).
The vectorw will be denoted simply by7. As a special case, when we take- —1, the
vector(—1)V will be denoted simply by- v, and will be called theector opposite o .

If we look for example at the vectors depicted in Figure 2.@see that; = v; = vj = {v},

with ¢ > 0. (In fact, sincev] is slightly shorter thav;, we can in fact say that we also have the
inequalityt < 1.)
Scalar multiplication is the only operation that keeps @ectin line,” in the following sense.

Given some non-zero vectef, the vectors that point irither the same, or opposite direc-
tion asv are exactly the scalar multiples of , that is, of the formw = ¢ V.

Vectors can also badded as explained in the following definition.

Vector Addition
Assume two vectors; andv; are given. We define theector sum o with v3 to be the
vectorw, constructed as follows: N

Vi

v
D C
%
\p
w \ V3
vi
A = B

Figure 2.1.10

(i) Start off with a “copy” of v, placed somewhere in the plane, so that is has source at
some point4, and target3.
(i) Place a “copy” ofv} to start atB, and letC be the target of this “copy.”
(iii) Setw = AC.
The resultw of this construction is denoted bﬁ + \72
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CLARIFICATIONS. When we think vectors as “driving directions,” the constion of the sum
Vi + v3 can be understood as follows: start somewhere, drive aicgptol whatv; specifies, then
drive according to what’ specifies. In other words, we travel along a path that can serithed as
“ V1 followed byvs” As Figure 2.1.10 suggests (where the two copies mentiontkidefinition
arev, = ﬁ andvj = @), we can also use the routes followed by vi” (using two other

copiesv, — AD andv] = DCY). This explains why we always have the equality:

- - =
V] + Vy = vy + Vi

Using Figure 2.1.10 as a guide, some folks describe the wanisin of the vector sum as either
being given by the so-callefriangle Rule(because either way we complete a triangle), or being
given by the so-calle@arallelogram Rulgbecause we can think of our construction as a way to
complete a parallelogrart BC' D).

What is not so obvious is the fact that the result of the abowsttuction igshe same, regardless
of the point (A), where we decide to starthis will be clarified shortly in the next topic, where we
will make the connection between Vector Geometry aradrices

Vector Coordinates

Throughout this entire topic, we assume we have fixed a langthand all coordinate systems
we use are square.

Vector Coordinates

Given a vectorv, the differences between matching coordinates of the entipof the

vector are named as follows:

o the difference(z-coordinate ofargetof V) — (z-coordinate ofsourceof V') is called
the z-coordinate v, or the“run” of V.

e the difference(y-coordinate oftargetof 7) — (y-coordinate ofsourceof 7) is called the
y-coordinateV’, or the“rise” of V.

Using the Distance Formula in Square Coordinates, oneyaasiains:

The Vector Magnitude Formula in Square Coordinates

If the coordinates of a vectov are z and y, then its magnitude is

|7 = /22 + 32 units. (2.1.11)

@ This definition of vector coordinates will be improved aléttater, when we will discuss
the Position Vector Formula, and its coordinate version.

Example 2.1.2. Suppose a vector is presentedﬁs: 1@ with start pointA(2, —1) and
target point3(—1, 1), at let us find the coordinates and the magnitude’of
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B __1
—1?\\7 2
o\

Figure 2.1.11

Thez-coordinate ofv' is: = = (z-coordinate off3) — (z-coordinate ofd) = (~1)—2 = —3. The
a-coordinate ofV is: y = (y-coordinate of3) — (y-coordinate of4) = 1 — (—1) = 2. Having
the coordinates of our vector in hand, its magnitude is:

| V]| = /(~3)? + 22 = V13 units

CLARIFICATION. An alternative way to computing the coordinates of a vestasitting some-
where in the plane, is to considercapy of the vector, which starts at the origilm other words,
we seek to present as theposition vector of a poinf with respect to the originOnce the point
P is found,the coordinates of/ coincide with the coordinates @f. If we use this approach, then
Figure 2.1.11 can be enhanced to look like:

P(-3,2) 2
NS !
-3 —1 \\7 2
— \
J A

Figure 2.1.12

NOTATION CONVENTION. If the coordinates of a vectov arex andy, then we represerW
as a2 x 1 matrix:

v = [ . } (2.1.12)

Y

Identifying vectors(in coordinates) with2 x 1 matricesis justified by the following fundamental
statement.
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Vector-Matrix Arithmetic Equivalence Theorem

Vector Arithmetic matches Matrix Arithmeti®lore precisely:

L IfV = { 5; } andt is some real number, then:

v = [Z’"] - HZ’"] (2.1.13)
I 1f v, = {xl}andvgz {@},then
Y1 Y2
SR 1 T2 L )
_ _ . 2.1.14
R {yl}Jr{yz](u){ymLyz} ( )

CLARIFICATIONS. The equalitiesi) and (1) are exactly the formulas that we know from
Algebra, when we learned operations with matrices (see AgigeB.) Since the operations with
matrices have very nice properties, we can use them to getveitor counterparts, which are as
follows.

Properties of Vector Arithmetic

|. Associativity of Addition(d + V) + W = W + (V + W).
Il. Commutativity of Addition” + vV = V + .
Ill. Opposite Property{ — W) + ¥ =d + (- W)
IV. Easy Scalar Multiplicationsf @ = 0; 17 = W:¢0 = 0.
V. Associativity of Scalar Multiplications (1) = ¢(sW) = (st) .
VI. Distributivity over Scalar Addition{s + t) W = s + ¢ .
VII. Distributivity over Vector Additiont(W + V) =t + ¢ V.

- .

CLARIFICATIONS AND ADDITIONAL TERMINOLOGY. When dealing with three or more vec-
tors which are added, by the Associativity of Vector Addit{property | above), it is not necessary
to use parentheses anymore, so we can simply write long skensd + vV + W.

Concerning the use of Vector Opposites, we can also omihgases, by defining thesctor

subtraction operation:
U—-V=u+(-¥).

Using2 x 1 matrix presentations of vectonggctor subtraction corresponds, of coursentatrix
subtraction Using vector subtraction, we can easily compuasition vectorsas follows.

Position Vector Formula

Assume some poinD is fixed in the plane. Suppos@ and P, are two points, and let
N — s — . " .

p1 = OP, andps; = OP, be theirposition vectors relative to th®. Then the vector
v = P, P, which represents theosition vector of?; relative to theP,, is given by:
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¥ = PP, = OP, — OP, = b} — p.. (2.1.15)

CLARIFICATIONS. If we use a square coordinate system, wittas theorigin, and we have
our two points written in coordinates &%(z1, y;) and P»(x2, y»), then their position vectors can
be easily presented in coordinates as

— T — )
= and =
P1 [ n } P2 { n }
and our vectoiv = P, P, will be given in coordinates as:
—_— o P P
7:P1P2:I?2—IT1>= L2 | | Tog — T
Y2 n Y2 — U1

Example 2.1.3. Suppose we have two cars driving in the desert, both staatisgme point
O. Suppose one car reached paiitby driving 3 miles in the M5°W direction, and the other car
reached point>, by driving 2 miles in the $5°W direction, with both cars starting from.

Py B,
TY1

65°

Al T2

1 \A, | 19)

35°
TY2

P B,

Figure 2.1.13

We are asked to compute the following vectors in coordina(@she vectorsp; = O—Pl) and
Py = OP,. which are position vectors relative t9; (i) the vector v = PiP%. which is the
position vector of?; relative toP;. Using these calculations, we are also asked to find thendista
between the two cars.

Solution To find the coordinates qf; we take a look at the right triangle P, O B;, whereB;
is the projection of”; on they-axis (the North-South axis). Setting up the trigonomdtriwtions
of the65° angle yields

: B,\P, BP OB, OB
65° = = and 65° = =
sin OP, 3 COS OP, 3
from which we can compute
ByP, =3sin65° and OB; = 3cos65°. (2.1.16)

If we use the ruler on thg-axis, whereB; has coordinate,, then we know thaO B, = |y,|, so
using (2.1.16), we get
ly1| = 3 cos 65°.
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Since;T{. points “upwards” (towards North), the number is positive so the above equality
yields:
Y1 = 3cos65°. (2.1.17)

To get the coordinate;, we notice first that, when we considéi to be the projection of of?;
on thez-axis (the East-West axis), we clearly have a triangle asmgee/N\ P,OB; = AP,OA;,
which then yieldsD A, = B P, = 3sin 65°. Secondly, working exactly as above, this will give us

|1 | = 3sin 65°.

Lastly, sincep;. points “to the left” (towards West), the number is negative so the above
equality yields:
x1 = — 3sin65°. (2.1.18)

The coordinates of; are found exactly the same way:
To = —2sin35° and 1y, = — 2cos35°, (2.1.19)

SO our two vectors are presented in coordinates as

_, [ —3sin65° ] [ -2719 [ —2sin35° ] [ —1.147
p1 = [ 3 cos 65° }—{ 1.268 ] and pz = {—2005350 ] = { ~1.638

The vectorv = P, P is now computed using the Position Vector Formula

5o o [ —2sin35° | [ -3sin65° ] _ [ ~2sin35° +3sin65° | [ 1572
=P27P1= 506350 3 cos 65° | —2c0s35° —3cos65° | T | —2.905

The distance between the two cars is the magnitude of thiswvélat is,

| V]| = v/(—25in 35° + 35in.65°)2 + (—2 cos 35° — 3 cos 65°)2 ~ 3.304 miles

P> Now work Exercises 10-13.

Using coordinates, one can easily deaid®en two vectors are perpendiculas explained in
the following statement. (The outline of the proof is givarkixercise 30.)

Perpendicular Vectors Theorem

x1

Two vectors given in coordinates & = [ y
1

} andvs = [ ‘22 } are perpendiculay if
Y2
and only if:

T1Zo + Y1Y2 = 0. (2120)

Vectors and Lines

Throughout this entire topic, we assume we have fixed a leagith together with a square
coordinate system. When dealing with points in the planenaw® have two points of view on
them, which we will often interchange:
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Coordinates Vector

P(z,y) < P = lﬂ

Unless otherwise specified, the vecipr that corresponds taP will always mean theposition
vector ofP relative to the origin

Using vectors, we can quite easily “navigate” along lines.b€& a bit more specific, suppose
we have a lineZ, which passes through two distinct poirtg(z, yo) and P; (z1, y1). We wish
to characterize all point®(x, y) that sit on the lineZ, either indirectly, or by writing down an
equation inz andy. Consider the position vectofs = { zo }E{ = [ zl }5) = [ Z } of our

0 J1 £

three points, and the vectors

omtaeae 3] [3]- 73]

Y1 Yo Y1 — Yo
V=RP=TF-p=|"|-|"|=]"""
0 P =bo Y Yo Y —"%Yo

By placing both these vectors to startrgt we see that the condition thatsits on.Z is equivalent

to the condition thathe vectorsP, P, and P point in either the same direction, or in opposite
directions This simply means thawve can write v as ascalar multiple ofl, meaning that
V = ¢, for some numbet. By replacing these two vectors with their original defimits, the

above condition reads:
P —po=t(Pi — Do) (2.1.21)

By addingp; to both sides, the above equality can be re-writterpas= pg + (1 — p) =
Py + tp1 — tpg, thus by grouping, we can also re-write (2.1.21) as:

P =tpi + (1 —t)py. (2.1.22)

This way we have proved the following important statement.

Parametric Characterization of Lines

Given a line.Z passing through two distinct point&,(xo, yo) and Fy(z,v;), a point
P(z,y) sits on.Z, if and only if there is some real numbgrsuch that

x oy X1
HEEFHER 2129
Explicitly, the matrix equality (2.1.23) reads:
rx=tr;+ (1 —1t)x
(2.1.24)
y =ty + (1 —t)yo

The above parametrization is particularly nice, becausantalso tell us something about the
location of P on the line, as it relates t8, and ;. The easiest way to understand this, is to think
t as atime variable so ast increases from-oco to oo, our vehicle drives at constant speed on the
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line .Z, passing first through, at timet = 0, then passing through, at timet = 1. In particular,
1 . . — . . .
att = 5 we are at thenidpoint of P, P;, which will have coordinates

T = ([I,'l + :L'O)

NN

y==(y1 +v)

N | —

In vector notation, the position vector of this midpointisply

B:%(_i—i-%).

Switching things around a little bit, let us assume for themeat that only one poin® (¢, yo)

on.Z is given, and instead d¥, (;, y;) we know anon-zero vectond = , which either sits

h
k
on, or is parallel to.Z. Such a vector is called direction vector for .. Then our line can be
parametrized either in position vector form

T =Do+1, (2.1.25)
or in coordinates:
T o h

= +t : 2.1.26
HEHEN 2129

T =x9+th
(2.1.27)

Yy =1+ tk

(All these formulas are easily obtained from their two-paiarsions, because a second pdiit
on.¢ can be easily constructed by means of the position vegter pg + .)

@ The phrasédirection vector” (for a line) might be a bit deceiving. If for example we start
with a direction vectord for a line.#, then its opposite vector U is again a direction vector for
the same line! Even though a line can have a lot of directi@tors,any two of them are non-zero
scalar multiples of each other

Example 2.1.4. Consider the lineZ’ that passes through the pointsl, —2) andB(3, 8), and
suppose we are asked to produce three distinct directidonggor it. One of them is, of course,

the vector
— g — Ta 3—1 2
:E: = =
o [yB—yA] [8—(—2)} [10

Since all other direction vectors fag# are non-zero scalar multiples (Tﬁ , We can construct a
second direction vector, for instance, by taking

-1[3]-[1]

=

N[
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Another direction vector for# (this time pointing in the direction opposite g) can be taken,
for instance, to be:

)

The main drawback of parametric equations of lines (and nadingr curves, for that matter)
is the fact that they make it difficult to check if a “candidgp@int P(z, y) does or does not sit on
our line (or curve). For this reason, we seek other types oaegn, in which the parameter, {n
our case) i®liminated Fortunately, for lines, this elimination process is gadibne: in (2.1.27),
which we can also write as — o = th & y — yo = tk, we can multiply the first equation by,
the second equation by, making the right-hand sides in both equations equal, thtaming the
following.

The Line Equations

I. Point-Direction Equation. A line ., which passes through a poift(zy, yo) and has

U = { Z } as a direction vector, can be represented by the equation:

k(x —x0) = h(y — yo)- (2.1.28)
Il. Two-Point Equation. A line ., which passes through two distinct points(zo, o)
and P(z1,y), can be represented by the equation:

(y1 — o) (@ — zo) = (1 — 0)(y — Yo)- (2.1.29)

The equation (2.1.29) follows from (2.1.28), by using thetee W = I, = p; — po.
CLARIFICATIONS. Just about anywhere we have seen line equations befosewtre pre-
sented in the form of a so-callegneral linear equation

ar + by = c. (2.1.30)

Of course, either one of the equations (2.1.28) or (2.1.28)be transformed to match (2.1.30).
For example, if we start witk(z — z,) = h(y — yo), We can “open up” parentheses, to get

kx — ]{5.’110 = hy — hyo,
and addingcz, — hy to both sides will yield
kx — hy = kxog — hyo, (2.1.31)

which can be matched with (2.1.30) as= &k, b = —h, ¢ = kzy — hyp.

Of course, there is nothing unique about all our coefficidotanstance the equatidx+3y =
1is equivalenttalz+6y = 2, so they represent the same line. Concerning general kugetions,
the only “safe” statement one can make is:

If two general linear equationsz + by = c andd’x + b'y = ¢ represent thesame ling
then the triplega, b, ¢) and (d’, b/, ¢’) are proportional meaning that there exists some reg|
numbert, such that’ = ta, b’ = tb andd = tc.

The general equation of a line (although not unique) pravigewith some useful geometric
information, as illustrated by the following statement.
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The Frame Theorem

Assume a lineZ is presented by a general linear equation
ar + by = c. (2.1.32)

(A) The vectord = { a } Is adirection vector for.Z. Furthermore, all other direction

vectors for.Z are non-zero scalar multiples af .

(B) The vectorn = { Z } is perpendicular taZ. Furthermore, all other vectors perpen-

dicular to .Z are non-zero scalar multiples af .

Proof. Fix one particular point?(zg, 1) on the line.#, and consider its position vector

po = { o } . Consider now the poin®, (z,, 1), whose position vector ig} = pj + U, thus

Yo
MR P P b |
Y1 Yo a Yo +a
Using the fact that, andy, satisfy the equation (2.1.32), it follows that
axy + byy = a(zg — b) + b(yo + a) = axg — ab + by + ab = axy + byy = ¢,

which means that the poift; also sits onZ’, so in particular, the vectaf, P, = 171) — % ST
is indeed a direction vector fo’, thus proving statemenaj. As for statements), we simply
observe that the vectord = [ _ab } andw = [ Z } easily satisfy the condition from the
Perpendicular Vectors Theorem, sbis indeed perpendicular fa. O

Example 2.1.5.Suppose we have a lin¢ given by the equation

4x — 6y = 5,

and we want to find some direction vectors and some perpdadiectors.

—(;6) ] _

According to the Frame Theorem, one particular directiostoefor & is 0 = {

4l and any other direction vectar for . must be a non-zero scalar multiple@¥, so in our

case we are looking at vectors of the form

- [1]-[5]

. . . 1 . .
with s any number we like, except For instance, when we lat = 3 we get a new direction
-3
—2

vector: v} = { g }

1 . . . . .
vector: v, = [ } We can also let = —g in which case we obtain yet another direction
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Again by the Frame Theorem, one particular vector that isgretticular toZ is o = —46 } ,

and any other vectow that is perpendicular t& must be a non-zero scalar multipleof, so in
our case we are looking at vectors of the form

oee 4)-[ 4]

. . . 1 .
with s any number we like, except For instance, when we let= 7 we get a new perpendicular

1. . . .
vector:w; = [ _23 } . We can also let = —gr in which case we obtain yet another perpendicular
= { —2 ]
vector:wj; = 5 |

A quick application of the Frame Theorem, we get the follgyvaiharacterization of parallel
and perpendicular lines.

Equations of Parallel/Perpendicular Lines

Given a line.Z with equation
ax + by = c,
the lines, that arparallel or perpendicularto ., are characterized as follows.
(A) Every line which igarallel to.Z is represented by an equation of the form:
ar + by = ¢,
for some constant =# c.
(A) Every line which igperpendicular taZ is represented by an equation of the form:
—bx + ay =,
for some constant’.

Example 2.1.6. Suppose we have the poif(2, —1) and the lineZ is given by the equation
3xr + 5y = 8§,

and we want to find the (general) equations(af) the line.#, passing througl® which is parallel
to ., and(b) the line.%; passing througlt® which is perpendicular t¢Z.
According to the above characterizations, the lifiecan be represented by an equation of the
form
3r+ 5y =01

with ¢, to be determined. By plugging in the coordinates of the gp@int, which sits onZ;, we
getc; = 3(2) + 5(—1) = 1, so.%, can be given by the equation

3r + by = 1. (2.1.33)
Likewise, the line%, can be represented by an equation of the form

—5x + 3y = ¢
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with ¢, to be determined. By plugging in the coordinates of the gp@int, which sits on%,, we
getcs = —5(2) + 3(—1) = —13, s0.%, can be given by the equation

—dx + 3y = —13. (2.1.34)

CLARIFICATION. Most readers have seen lines described in a slightly diftevay, by means
of the so-calledlope-intercept equationswhich are presented in the form

y=mx+p. (2.1.35)

In such a presentation; is theslopg andp is they-intercepf that is, they-coordinate of the point
where the line intersects theaxis (whosez-coordinate is, of course, = 0). Although equations
of the form (2.1.35) have some advantages, the generaliegsatf lines are much nicer to use,
for several reasons:

e The lines that can be presented by (2.1.35) cannot be Vierticareas their general equation
is simplyx = c.

e The general equation allows us to easily read the geomafamation about our line, such
as direction or perpendicular vectors, as described in thm€& Theorem.

e Finding the equations of perpendicular lines using (2.JL.c2% be a little tricky, whereas
using general equations (as in Example 2.1.6) the task i sinplified.

e In mostinstances, when we try to find the slope-intercepatgu of a line, the slope: ends
up being a fraction, whereas in general equations fradtmefficients may be avoided.

e Although (2.1.35) allows you to quickly find the-intercept, thez-intercept requires an
algebraic manipulation. If we use general equations indh@ tix + by = ¢, these intercepts
are straightforward: the-intercept isE; they-intercept is |

The only advantages of using slope-inte?cept equationmes [(if available) areiniquenessnd
the ease of plotting. If a line is presented by an equatioheform (2.1.35), points on it can be
easily generated by plugging in various values:#pand using the equation to (easily) compute
the matchingy-values.

Example 2.1.7. Consider the equations (2.1.33) and (2.1.34) for the lifesind.%; which
we discussed in Example 2.1.7, and let us convert theseieqsa&b the slope-intercept form. The
main technique is to take each each equation, and solveyt for

When we consider the equation (2.1.33), we can substaétom both sides of the equation,

thus gettingoy = —3x + 1, and then divide by, or equivalently multiplying by%, thus getting

1 3 1
y—g(—?)x—l—l) ——ngrg.
Similarly, when we consider the equation (2.1.34), we cahfadto both sides of the equation,

thus getting3y = 5x — 13, and then divide by, or equivalently multiplying byzl);, thus getting

1
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P> Now work Exercises 14-22.

Plane Isometries

?P The remainder of this Section is quite challenging!We include this topic here only for
the sake of completeness. On a first reading, you may wanttorfymiliarize yourselves with
formula (2.1.42) — needed in Section 2.2, skip everythirsg,ednd go directly to the Exercises
(omitting 25 through 32.)

What we will call atransformation of the planill be simply a function® from the euclidean
planeé into itself, which we will write® : P — @, orQ = ©(P). Same notations will be used
with vectors:® : P — ,orq = O(P). In coordinates we will writ® : (z,y) — (z,w) or

(z,w) = O(x,y), or (if we use vectors written as matriced): { Z } — { 5] } or { j] } =

C) ([ ‘; } . All transformations we are going to discuss here will berdefigeometrically, and

our main challenge will be to write formulas for them, so wdl wave to write something like:

z = expression inc andy
(z,w) = O(z,y) means:
w = expression in: andy

In most cases of interest, we will encounter transformatithvathave inversesIf © is such a
special transformation, its inverse transformation wéldenoted by® '. When computing an
inverse transformations we always use the following fact.

Inversion Principle

If © has® ! as its inverse, then
(z,w) = ©}(,y) meang(z,y) = O(z, w)

The types of transformations we are interested in are thwagteserve distancesneaning
that, for any two point$’;, P, we have:

d|St(@(P1), @(Pg)) = dlSt(Pl, P2)

A plane transformation having this property is calledsometry
The following simple fact follows straight from the abovdidéion.

Composite Isometry Rule

A composition of isometries is again an isomgtnyother words, if®; and®, are isome-
tries, then the composed transformati®no ©,, given by

(©106,)(P) =0:(0,(P)),
is again an isometry.

The first important class of isometries are those defined|msvis.
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To translate a vectoip by v simply means tadd v to P. A transformation of the from
T (P)=P+V

whereV is some fixed vector, is calledtenslation by V. In coordinates, iV = [ Z } ,

(O N ON AN A

The composition of two translations is again a translation:

T30%3 =%y.w (2.1.36)
In particular every translation has an inverse, which isragdranslation:
TS =T _3. (2.1.37)

Apart from thetrivial case (the one that has = ﬁ)), translations do not have fixed points
However, using the Composite Rule above, one can easifyythatevery isometry® can be
uniquely written as a compositidd = T o O, with:

e T atranslation and

e O, anisometry that fixes the origjnhat is:©,(0) = O.

Our interest in isometries fixing the origin is justified by ttollowing fundamental result (see

Orthogonal Matrix Theorem

An isometry®, fixes the originif and only if it can presented in coordinatesm@slltiplica-
tion by a2 x 2 matrix

oo([y]) =10 o] [v]=Lwian] 2139

where the Column% :j } and [ jj } of the matrix arewo perpendicular vectors of magni-

tudes equal td.

CLARIFICATIONS. A 2 x 2 matrix of the special type described above is calledi@dnogonal

matrix. Using the Frame Theorem, orthogonal matrices can be siol@yacterized by the fol-
v

lowing conditions: (i)u? + v? = 1; (ii) { 5} } =+ { } Depending on the sign in (i), the

orthogonal matrices are named as follows.
(A) A matrix of the form
F = [ Z _”u ],with w2 = 1. (2.1.39)
is called &flip matrix .
(B) A matrix of the form

4 When working with vectors in coordinates, we must have = @(ﬁ), S0 ®, must be given by:®, =

‘I%l O @() = ‘377 0 ©O.
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R = {“ :} ],with w402 = 1. (2.1.40)
is called arotation matrix .

Why do we use these names? As it turns out, flip matrices aredtely related to the so-called
flip transformationswhich are defined geometrically as follows:

(%

For any given a lineZ in the plane, thélip (or reflection) about . is the transformation
o P—Q, defined geometrically by demanding théte line . is the perpendicular
bisector ofPQ).

CLARIFICATION. By construction, flip transformations have many fixed psiadl points on
£ are fixed by§ . With this observation in mind, we have the following spéegrrsion of the
Orthogonal Matrix Theorem (see Exercises 23-24 for thefproo

Flip Matrix Theorem

Aflip about aline passing through the origsiprecisely a transformation that can presentef
in coordinates asnultiplication by a flip matrixthat is:

(G- o) [-lrn] e

whereu, and v are two constants satisfying + v? = 1. More precisely, itZ is given by
2 2

— 2
b a2 ando — — ab

the equation: by = 0, thenu = ——
< Ty “ a?+b

a? +b?’

(%

What happens if we start with a flip matrix = as above, we consider the corre-

sponding flip transformation (2.1.41), and we waniital the lineZ? In other words, given and
v, can we finda andb? One possible approach to this question is given in ExeBAseAnother
more direct approach is as follows. Start with a pdinot fixed by® (unless® is theidentity,
there will be plenty of such points), then consider the pgint ®(P), and then simply use the

fact that the vecto@ must be perpendicular t¢. By the Frame Theorem, one possible choice
for the pair of coefficient$a, b) would be obtained simply by taking the coordinates of thearec

1@ = Z . A calculation of this sort is shown in Example 2.1.10 below.

Example 2.1.8. As an easy application of the Flip Matrix Theorem, let us catef ,, the flip
about the “diagonal” linez, given by the equation = z. Of course, we can re-write the equation

of ¥ asx — y = 0, so we can use a general equation wita 1, b = —1 andc = 0. The numbers
. ¥ —a®> (—1)2-12 2ab 2-1-(=1)

that appearin (2.1.41) are = PR TR 1) =0,n= S i —m =1,

so the formula (2.1.41) yields:

x 101 x| |y
w(D-1e]]-12]
Example 2.1.9. Suppose we want to compuge.a«is, the flip about ther-axis, which has an
even simpler equation = 0, which matches a general equation wite- 0, b = 1 andc = 0. The
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b2 — a2 2ab
numbers that appearin (2.1.41) ate= ———— =1,n = — —— = 0, so the formula (2.1.41
ol PP ( ) a? + b? " a? + b? ( )
yields:

()= 1o A= 15)

Example 2.1.10. Someone hints to us that the transformation

w

O(z,y) = (3 — 3y, —57 —

is a flip transformation about a lin& passing through the origin. We are asked to confirm this,
and to find the lineZ.

First of all, we can writeé® in matrix form:

so the flip matrix candidate iVl = 4+ % |.Itis pretty easy to see thétis indeed a flip

5 5
matrix, so the only thing left to do is to find the lin®. Start for instance with the poirft(5,0),
so using the given formula f@®, the pointQ)(z, w) = ©(P) has coordinates = 3 andw = —4.

In particular, the vectof@ — which isperpendicular taZ has coordinates
3 ) —2
-5 -[8]- =)

The fact that the vectc{r :i } is perpendicular tdZ, makes it possible to write a general equation
for £ as®

(=2)z 4+ (—4)y = 0.
If we wish, we can “clean up” the above equation, by divingrgtléng by —2, so we can say that
Z is also given by the equation:

x+2y=0.

Up to this point we only discussédlip matrices. How aboubtationmatrices? Their geometric
counterparts are as follows.

5 General equations of lingsssing through the origiare always of the formzz 4 by = 0. (The constant term
is always equal to zero for such lines.)
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Given a pointC' in the planeyotation about C' is acompositiorth = §F4, o F¢ of two
flips, that is, of the form

where§ ¢, and§ ¢, are two flipping transformations, about two lin€s and.%, thatinter-
sect atC'. The pointC'is called thecenter of rotation.

CLARIFICATIONS. When the two lines intersect at the origin, each of the twwtflansforma-
tions can be presented as matrix multiplication, so usiegHlip Matrix Theorem, it follows that
we can write rotation transformations about the origin ggiproduct of two flip matrices

s([o]) =[]l =]

Using the associativity of matrix multiplication, we canitgrrotation transformations assangle

matrix multiplication: ]
x a b x
%([yb_{c d_'[y]’

a b| | w v R
c dl| | v —uy vy —up |
As it turns out (see Exercise ?3) rotation matrixis precisely a matrix thatan be written

as a product of two flip matricesUsing this fact, we now get our second special version of the
Orthogonal Matrix Theorem:

Rotation Matrix Theorem

A rotation about the origins precisely a transformation that can presented in cocatks
asmultiplication by a rotation matrixthat is:

(7 T ) B e B

whereu andv are two constants satisfying + v? = 1.

where

Exercises

In Exercises 1-6 we assume a length unit is fixed, togethdr avgquare coordinate system.
When asked to find various quantitiese exact values!

1. Find the equation of a circle of radiagunits) centered at (2, —1).
2. Find the equation of the circle centeredi@®, 3), which passes through the poiit—4, 7).
Find the equation of a circle whose diameter has endp#itits3) andQ(1, —5).

Find the center and the radius of the circle representéigdgquatioriz+3)%+(y—2)? = 8.

a > »

Find the center and the radius of the circle representédebgquationtz? + (2y — 1)? = 9.
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6.

Find the center and the radius of the circle representéladogquatiorzz?+ 42 +2y>—y = 3.

In Exercises 7-9 we continue to assume a length unit and aesgoardinate system are used.

10.

11.

12.

13.

14.

15.

16.

. Using bearing notation, find the direction thabjositeto S12°34'E.

. Using bearing notation, find the two directions that@@gendicularto N76°W.

Start atP(—3, 1) and travel on a straight line in thedBPE direction until you intersect the
y-axis. How long is your travel? What are the coordinates efdbstination point? Use
exact values.

By the Triangle Rule, you know that given points B, C', when you consider the vectors

W = AB, ¥ = BC, W = AC', you must have the equality
U+V=w.

Compute all these vectors, in the case when your three pbaws coordinates!(1, 2),
B(3,4), C(5,10), and verify the above equality.

Given the vectoral = { _21 } andV = { _io } find the following vectors and their
magnitudes:

(i) 2° +3V;

(i) 3° —2V.

Start at the origin and travel 5 miles in théIRE direction, then travel 5 miles in thelS E

direction, then travel 5 miles West.
(i) What are the coordinates of your destination point? Useevalues.
(i) How far is it from the origin? Use exact values.

Repeat the problem above, but with the following driuvitigections: start at the origin and
travel 5 miles West, then 3 miles in th&BE direction, then travel 5 miles in the6R°E
direction. Use exact values for part (i). For part (ii) roundhe nearest 0.001.

Find a general equation of a line which passes througbrtgim, and hast = [ _34 } as

a direction vector.
Find a non-zero vector that is perpendicular to the ligergby

Tr — 3y = 0.

Find a direction vector for the line given by

3r + oy = 8.
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17. Find a general equation of a line which passes thrde@h2) and@(2, 3).
18. Given a lineZ with equation
Tr — 3y =8,
find a general equation of a lin®’ which passes through(1, 1) and is parallel toZ
19. Given alineZ with equation
2x 4+ 3y =5,
find a general equation of a ling”’ which passes througR(—1, 1) and is perpendicular to
Z
20. Find the equations of the horizontal and the verticadipassing through(2, —3).

21. Find a general equation of a li¥€ which passes throughB(0, 1), and has a direction vector
that points in the M5°E direction.

22. Find a general equation of a lit® which passes through'(—1, 1), and has a direction
vector that points in the N°W direction.
The remaining Exercises are only for an expert user!

23*. Proof of the Flip Matrix Theorem. Let_¥ be the line given by the equatian: + by = 0,
and letF » be the corresponding flip transformation. Fix now some péift, ), and let
Q(z,w) = F«(P) be the image o’ underF . The Flip Matrix Theorem simply states
that the following formulas hold:

(b — a®)z — 2aby
a? + b?

2=
(2.1.43)
—2abr + (a® — b*)y
N a? + b?
Use the steps below for deriving the above formulas. By tHmitien of the flip transfor-
mation, we know that: X) P(Q is perpendicular taZ, and @) the midpoint of P() sits on
Z), using the steps below.

(i) Consider the position vectorg = z andq = { Z } of our two points. Since by

condition () it follows that the vector

Po-a-%-| .0 ]

w—=y
is perpendicular to the lin&, so by the Frame Theorem, this vector is a scalar multiple

of 0 = { @ } so there is some numbérsuch that

O )-)-ls)

{z:x+m

thus we have

W=yt (2.1.44)
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(i) Compute the scalat, using the midpoint conditions(), which tells us that the coor-
dinates of the midpoind/ of the segmenPQ satisfyax,; + by, = 0. Using the
midpoint formula, we know that the midpoitf has coordinates,; = (z + z) and
Ym = %(y + w), so condition B) will simply say that:

a(z+2)+b(E(y+w)=0.

Replace: andw using (2.1.44), which will eventually yield an equatiorvin
(i) Replacet with what you found in step (ii), and derive the formulas (23).
2 2

b* —a 2ab

(iv) Verify that the quantities, = pEe andv = — prR do indeed satisfy the equality

u? +0? =1,

(%

24, Start with two constants satisfying + v = 1, build a flip matrixF = { z } and

consider the transformation

(i) Show that the point$(1 + u,v), Q(v,1 — u) and the originO(0, 0) all sit on a line
#. (HINT: Show that the vectory = { 1 J; “ } andq = [ ) ﬁu } are multiples

of each other.)
(i) Show that® coincides with the flip transformaticgi .

25*. Find the formula for the flig§ ~ about a general line, given by the equation+ by = c.
S
t
P think of finding &g(?) as a three-step process: (i) translate everything-by (thus
changing the lineZ to a new lineZ” that passes through the origin: find its equation!); (ii)
flip about.#”; (iii) translate back bya'. In other words, we can writ§ » as a composition

HINT: Fix some pointA(s, t) on the line, and lel = be its position vector. For any

S¢=Fz0Fg 0T _3,

so if you work in vector coordinates, your formula 8, will be:
X r— S S u v r— S S
() -e (500 )10 S =)+ 0]

Wherel Z Uu } is some flip matrix. In your final result, and should be eliminated,

using the line equatioas + bt = c.

26*. Prove that the product of two flip matrices is a rotation xatr



62 2.1. BASIC NOTIONS OF ANALYTIC AND VECTOR GEOMETRY
27%. Prove that every rotation matri% _u Z } can be written as the product of two matrices.
(HINT: One of the two flips can be chosen to [3% _01 } )
28¢. Prove that a composition of two flips about parallel linea tsanslation.
29*. Suppose you have a rotatidhwith centerC'(s, ¢), which might not be the origin! Consider
the position vectorc = [ ; } of the center, and the transformation
RO=FT_L0NRoTo.
Show thati? is a rotationabout the origin Conclude that we also have the equality
MR=FT:0NR°0T_<,
the rotation transformatioPit can be presented as
T . 0 xr— S S . u —v ) r— S S
() R (s S B o e R S
Where{ Z _uv } IS some rotation matrix.
30*. Proof of the Perpendicular Vectors Theorem.Use the following steps.

(i) Start of by placing both vectors to start at the originso their targets will be the points
Pi(z1,y1) and Py (25, y2). We now are dealing with a triangleO P, P, for which the
condition that the given vectors aperpendiculay is equivalent to the condition that:
ANOP, P, is aright triangle, with hypotenusdn turn, by Pythagoras’ Second Theorem,
this condition is equivalent to the equality

PP?2 =0P?%+0P2. (2.1.45)

(i) Use the Distance Formulato Write eachif,?, O P2, O 2 as algebraic expressions

in x1, y1, T2, yo. This will now turn (2.1.45) into aequation inzy, y1, 2, Y.
(iif) Do a bit of Algebra on the equation you got in part (ii)cashow that it is equivalent
to:
172 + Y1y2 = 0.
31*. Parallelogram Law. Prove that, for any two vectos andvs, one has the equality:
98+ 93" + I3 = 3" = 2|53 ° + 2|
32¢. Prove that the condition that two vectors andvs are perpendicular, is also equivalent to

either one of the following two conditions:
O [V + 93l = [[52]° + 92
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i) [vs = vil" = [[v3 +va”
These final Exercises will help you prove tBethogonal Matrix Theorem.

33*. Show that if an isometr fixes two distinct points” and @, that is, if®(P) = P and
O(Q) = Q, then® fixes all points on the lin’Q. (HINT: Take R on the lineP(, and
let S = ©(R). Consider the numbers = dist(P, @), + = dist(P, R) = dist(P, S) and
y = dist(Q, R) = dist(Q, S). The fact that? is on PQ) means thabne of the three numbers
a, r, y is equal to the sum of the other twio turn, this forcesS to sit anP(@ too, and finally
this forcesS to coincide withR.)

34*. Show that if an isometr fixes the vertices of one triangle, théhfixes all the points in
the plane (in which cas® is the identity!) (HINT: Use the preceding Exercise, by showing
first that® fixes all the points on the perimeter of a a triangle, and théras all points
that sit on lines passing through two points on the perimeter

35*. Show that if an isometr fixes two points, then eithé fixes all the points in the plane
(in which case is the identity!) or © is a flip.

36*. Show that if an isometry fixes a pointC', then either® is a flip about a line passing
throughC, or © is a rotation about”. (HINT: If ©® has another fixed point distinct from
C, then use Exercise 35. 8®(C) has no other fixed point, pick sonfé # C, and let
Q = O(P), of which we know thaty # P. Using distP, C) = dist(Q, C), it follows that
the perpendicular bisecta® of PQ passes throughy’. Consider then the flig » and the
composed isometrp = © o F . Show that® fixes bothC' and(), so Exercise 35 can be
applied to®, so eitherd is a flip, or the identity. Finally, note that, singe,’ = F¢, we
can also write® = ® o F, so either® is the flipF ¢, or it is a composition of two flips
©O=®0Fy.)

2.2 The Analytic Construction of the Trigonometric Functions

Up to this point we only learned about the trigonometric tiorts ofacute angle measurek
is now time to expand the definitions of the six trigonomehuiactions toarbitrary numbers

Rotation Angles and Their Measures

In order to understand rotation angles, it is helpful totieth short stories.

Imagine you are on a merry-go-round wheel at a playgrourdl sameone (slowly) spins you
for a certain period of time. Suppose you have a compass with 0 as you go around on the
wheel, the needle on the compass will also spin. What you teashd then is to keep track of the
entire movement of the compass needle during the gti@rnatively, you may want to keep track
of how much you have turned on the wheel

Another way to look at this problem is to imagine you are a ermetompeting in a stadium
that has a circular track, you run for an hour, and you wanhtmkthe distance (on the track) you
covered, and alsehich wayyou ran.
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What we will agree to calladian measures or degree measuresor turn measures etc. will
be simplyreal numberswithout any limitations on how big/small they are, or whatlthey are
positive or negative. When we are taking aboubt@tion measure, we will understand a mathe-
matical quantity that can be expressed at the same time iangdlegrees, turns, etc., according
to the usual conversion rules:

1turn = 2w (radians) = 360°.

. . s 5% .
For instance a rotation measure-e450° can also be represented 4% - 80~ 5 (radians),

. . . i . 31
or as1.25 turns. Likewise, a rotation measureef?'Z (radians) can also be represented—aj .

1 o
(20) =
s

Assume, as usual, we fixed a lengthit, together with a square coordinate system.

A rotation angle is a paira = (s, «v) consisting of
e aray s in the plane, hereafter referred to as thiéal side of a;

e arotation measurey, hereafter referred to as thetation measure ofa

Given such a rotation angle, we constructé@sninal side by rotating the initial side by,

according to the following conventions:

e if a is positive the rotation is madeounter-clockwisg

e if ais negative the rotation is madelockwise

e in either case, the net amount of rotatiofri§ so whem = 0, the terminal side coincides
with the initial side.

@ The meaning of “counter-clockwise” and “clockwise” depsraf the orientation of our
square coordinate system. We will always agree that théip®staxispoints to the righ{towards
East), and the positivg-axis points up(towards North). If we have our coordinate system point
the “wrong” way, then we have to understand that everythiegivaw is on a large glass window,
S0 we can always “correct” our view, if we have to, by lookingrh the other side of the window.

CLARIFICATION AND ADDITIONAL TERMINOLOGY. Two rotation angleﬁ andg are said to
becoterminal, if

(a) theirinitial sides coincideand also

(b) theirterminal sides also coincide

In practice, we do not like to have to deal with conditidi, so we can employ the following easy
test instead.

Coterminal Angles Test

Two rotation angles areoterminal if and only if:
(a) theirinitial sides coincideand also
(t') theirrotation measures differ by an integer multiple of one turn
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Figure 2.2.1

Example 2.2.1. In Figure 2.2.1 we see three coterminal rotation anglesh@ling initial side
s and terminal side), with rotation measures = 135°, § = 495°, and~y = —225°. When we
compare, for instance and~ by taking their difference, we get

B — 7 = 495° — (—225°) = 495° + 225° = 720° = 2 - 360°.

To manufacture other rotation angles coterminal to thefeyeaneed to do is to use rotation
measures of the form
135° 4+ n - 360°, with n arbitrary integer

For instance. we can uga5° + 10 - 360° = 3735°, or 135° — 7 - 360° = —2385°.

Of course, when we use radials()° must be replaced 3. For instance, the angles shown

- : : . 3 11 5
in Figure 2.2.1 have rotation measures (in radians) Zﬂ = Tﬂ and~y = —Zﬂ.

Transformations Associated with Rotation Angles

Assume we are given a rotation an@e: (s, ). As described above, the process of con-

structing theeerminal side ofa is carried on by means ofratation transformatiorwith center at
thevertex(that is, at the source of the ray. We denote this rotation transformation 9¥-, and

we call it therotation determined by a.
When we specialize to the case when tieetex is at the originwe know from the previous
Section that this transformation is given in vector cooati#s (in matrix form) by:

([)=10 B

whereu andv are two numbers satisfying the equation-v? = 1. As it can be seen geometrically,
a rotation transformation as one given in (2.2mh)y depends on the rotation measureln other
words, it will act the same way, regardless where the initial sidis placed, as long as it source

is at the origin So the matrix Z ZLU employed in (2.2.1), will only depend an and for this
reason we are going to call it therotation matrix , and we are going to denote it [, .

The Trigonometric Functions

The main observation that explains the analytic definitibthe trigonometric functions is the
following.
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FACT A. If a is anacute angle measur¢hen when wev-rotate the point? (1, 0) about
the origin, we reach the point, (cos a, sin «).

P,
B 4
a |
0] A Py
Figure 2.2.2

Everything follows from the fact that, when we talkde B to be the projections af, onto the
x- andy-axis, we have a right triangle O AP, which has hypotenuseP, = OP, = 1, from
which we immediately ge©® A = cos a and AP, = sin «, which means that the coordinates of
P,(x,y) satisfy|z| = OA = cosa and|y| = OB = sin a. Finally, because andy arepositive
we can get rid of absolute values.

What happens when we work with vectors? The position vedtar pois m = { (1] } the

" . COS
position vector ofP,, is IT(Z = {

<in o } , and these two vectors are linked to the rotation matrix

R, = { z _uv } by the identityp, = R..p;, which means that we have the identity

EARENEOEE!

and this way we can rephrase Fact A as:

FACT B. If «is anacute angle measurthen then-rotation matrix is:

|

cos —Sin«
Sinx  Cos«

(2.2.2)

Example 2.2.2. Suppose we rotate the poidt(2, 1) 60° about the origin, and we need to
find the coordinates of the poid@ that results from this rotation. Write the resulting point i

coordinates)(z, y). If we use vector coordinates, for the position vectars = [ ? } and the

position vectorq = { :yc } , we know that that these vectors are linked using a rotatiatmixnby



CHAPTER 2. TRIGONOMETRY BEYOND ACUTE ANGLES 67

the equalityq = Reo &, SO we get;

x| | cos 60° —sin 60°

y | | sin 60° cos 60°
L3 Ly ( £) V3
2 2 [ 9 ] 2 1= 92

= . 1 =

V3 1 V3 1 V3 1
Y2z Y2, —. 3+ <
5 5 2+2 1 5

Using Facts A and B, as well as the Ratio and Reciprocal Ites{isee Section 1.2) as guide-
lines, we can now construct our general trigonometric fiomstas follows.

Sine and Cosine of Arbitrary Angles

Given some rotation measutie the numbersos o andsin « are defined to be the- andy-
coordinates of the point,, that is obtained by:-rotating the point? (1, 0) about the origin

COS ¢

Equivalently, if we work in coordinateshe vectorﬁa = is the first column of

the a-rotation matrixR,,, so again the rotation matrix will be given by the formula2(2)

Once sine and cosine are defined, we construct the otherriganbmetric functions as fol-
lows.

Secant, Cosecant, Tangent and Cotangent for Arbitrary Angés

Given some rotation measutg the other four trigonometric functions are defined as:

1 .
e seca = ——, providedcos a # 0;
COS ¢
1 . .
e cscaw = ——, providedsin a # 0;
S1n «&v

S1n &« .
e tana = , providedcos a # 0;
COS ¢

COS
e cota = , prowdedsma £ 0.

sin «
Outside the given provisions that accompany each one oé thegtions, that particular
function is not defined!

CLARIFICATION. We can compute the values of the six trigopnometric funestioha rotation
measurey using the preceding definitions, as long as we are able téddba “special” point”,,
described in the definition of sine and cosine. The main dbariatic of such a point is that,,
always sits on the unit circlethat is on the circle of radius centered at the origin, which has
equation

2 +y? =1 (2.2.3)

Equivalently, the position vectas, has magnitudé}ij = 1. The “special’ pointP,, is

completely determined using rotation angles of the follaydkind.
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A rotation angleﬁ is said to be irstandard position, if its initial side coincides with the
positivez-axis

CLARIFICATIONS. A rotation angle in standard position is completely defaed by its rota-
tion measure. Furthermore, if such an angle has measuhen the “special” poinf,, is exactly
the point where the terminal side intersects the unit cirde turn, the “special” point”, com-
pletely determines the associatedotationtransformation and its matrik,,. So now we can
think of three objects which completely determine one agoth

‘ a-rotation transformation about the ori¢in

!

|rotation matrixR., |

‘ P,, point on the unit circl¢

Besides using rotation transformations, the “specialhfsl, can also be located intuitively as
follows. Assumingx is given inradians in order to reach the point,, all we have to do is to
“walk” « units on the unit circle, starting at the poiRi(1,0). (Of course, depending on the sign
of «, we “walk” in the counterclockwise direction, df is positive, and clockwise, otherwise.)

Example 2.2.3.Compute the six trigonometric functions of an angle in staidgbosition, that
has the poinf’(— 2, 12) on its terminal side.

17717
Solution We are very lucky here, because the point given to us is omtitecircle! (The
equation (2.2.3) is clearly satisfied with = —% andy = }—?.) This means that what we are

given here is nothing else by the “special”’ point, and then the six trigonometric functions are
computed very easily straight from the definitions:

cos 8 i 15
o= — ina = —;
17’ 17’
1 17 1 17
sec ax = = —— csc o = =
cos o 8’ sina 15’
15 8
_sina 77 __1_5_ _cosa 17 __E
tana_cosa_ _ﬁ =-3 cota—sina_ E =
17 17

Unlike what we saw in the above Example, there many instawbes we are not “lucky,” so
the “special” pointP,, is not available, but instead we are only given a point gjtin the terminal
side of our angle. In this case, the trigonometric functiohangles in standard position can be
computed by the method shown below.
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The Coordinate Method

Assumex is a rotation measure, which corresponds to a rotation eﬁlghestandard posi-
tion, andA(z, y) is some poindistinct from the origirand sitting onits terminal side Then
the six trigonometric functions af can be computed as follows:

I. Compute the number
r=/12+ 17, (2.2.4)

that is, thedistance fromA to the origin which by assumption (that is distinct for the
origin) is positive
[I. Oncer is known, the six trigopnometric functions are given by

CoOsStx = —; SIn &0 = —;
r r
r r
secox = —; csCox = —,;
z Y
Y X
tana:—; cota = —.
z Y

As usual, the formulas giving secant, cosecant, tangentatashgent arenly valid when
the denominators are not equal to zero

CLARIFICATION. One way to see how these formulas come about is to obsenyetite the
terminal sidet of a is known, which is the same as knowing one polrmin ¢, we can always find

the special poinf, (cos o, sin «v), by observing that its position vectpr, = { Zi?g } points in
the same directioas the position vector’ = [ “:; } of A.
In particular, it follows thafa’ is apositive multiple op_, that is, we have
|i X :| |: COS & :|
=r . )
Y SIN
for some positive number, which will the give the equalities
r =TCOSC
(2.2.5)
y =rsina

All we have observe now is that, sincés positive andp,, has magnitudeé, we have

VIR =[] = el = el B2l =

and then the equalities (2.2.5) yield

cos =

sina =

REES
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from which everything else follows.

Example 2.2.4.Supposex is the measure of a rotation angle in standard position, whas
the pointA(—3, 4) on its terminal side. We can compute the six trigonometmcfions ofo, using
the above formulas with = —3, y = 4, which yield

r=/(-3)2+42=v9+16 = V25 =5,

from which we immediately get:

X 3 ) Y 4
C()SO[I—I—?; smoa = — = —;

r ) T 5)

r 5 r 5
seCx = — = — 3 CsCox = — = —;

T 3 y 4

Yy 4 T 3
tana = = = ——; oty = — = ——.

X 3 Y 4

The “Holy Grail” of Trigonometry

As it turns out, all the identities we discussed in Sectighalso hold for the general trigono-
metric functions.

The “Holy Grail” of Trigonometry

The Reciprocal ldentities:
1
sec o = ; csco = —;
COoS & sin o
. 1 1
sin @ = ; Ccos o = ;
csc o sec o
1
tan a = ; cot @ = .
) » cot o tan «
The Ratio Identities:
. tan « cot «
sin @ = ; Ccos o = ;
sec o CSC
sin o COS &
tana = ; cota = — .
» COS & sin «
The Product Identities:
sina = tan o - cos a; cosa = cot v - sin o
tana = sin « - sec a; cot o = cosa - csc .
The Pythagorean Identities:
sin? o + cos’ o = 1;
1 + tan® a = sec? a;
1 + cot? a = csc? a.

CLARIFICATIONS. Unlike what we saw in Section 1.2, proving these identiigef®irly easy.
On the one hand, the Reciprocal, Ratio and Product Identitie/ follow from the definitions. On
the other hand, the Pythagorean Identities now follow fromrhain feature of rotation matrices:
u? +0? =1.
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The main novelty in the case of general functions is that soitiee identities ar@rovisional
so they only hold if all terms and operations are defined. Rstiance the identityot o =

an o
will only work if both sin o andcos o are# 0. Other than that, the Identities are exactly the same
as in Section 1.2.

The Quadrant Information

As we have just seen, the computation of the trigonometrictions of some rotation measure
« is done most efficiently using the Coordinate Method outliabove, which uses anglesstan-
dard position because all we need ipaint on the terminal sideAs it turns out, the “approximate”
location of such a point is enough to give us some informatiorthesign of the trigonometric
functions ofa. To clarify this, all we have to do is to remember the follog/aiagram.

A
Sl
I
3| 3
2| 2
cosa <0 S|z cosa >0
sina >0 sina >0
cosa = —1 cosa =1
‘sina =0 sina = 07
cosa <0 cosa >0
sina <0 Z|3 sina<o0
Q w0
o
Il I
)I—‘VO
Figure 2.2.3

The figure above depicts four regions in the plane, hereedferred to agjuadrants, labeledl
throughlV as follows:
I: this quadrant consists of all points wiplositivez- andy-coordinates

[I: this quadrant consists of all points witlegativer-coordinateandpositivey-coordinate

[lI:  this quadrant consists of all points witlegativer- andy-coordinates

IV: this quadrant consists of all points wiplositivex-coordinateandnegativey-coordinate
So, if a point has both- andy-coordinates non-zero, then the sign combination of thedinates
completely determines its quadrant location. We will agred each half of a coordinate axis is
shared by two neighboring quadrants. (For instance thdip®ig-axis is shared by quadrants |
and Il).

We will also agree to say that a rotation measurgts in a certain quadrantf the terminal
side of its corresponding standard position angle sits at tuadrant

The quadrant information is absolutely necessary, if walrieesolve the following type of a
problem.

Basic Trigonometry Problem. Givenoneof the valuesin «, cos «, tan a, cot «, sec
«, plus thequadranta sits in, find theother five values
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CLARIFICATIONS. The main novelty here, when compared with the case (disduasSection
1.2) when only acute angles are involved, is the fact thgotrometric functionsan have nega-
tive values In particular, we have to be careful with the identitiesieknt from the Pythagorean
Identities, which now have the following general form.

The Derived Pythagorean Identities

cosa = +v'1 —sin? a; sina = V1 — cos? a;
seca = /1 + tan® o csca = +v/1 + cot? o
tana = £vsec? a — 1; cota = £Vesc2a — 1,

Exactly as we learned in Section 1.2, the Basic Trigonontoplem can be solved by two
methods.

Algebraic Method for Solving the Basic Trigonometry Problem

I. The value of one of the unknown five functions is the reagait@f the value of the given
function. Compute it!

II. Using either the given value, or the one computed in thevimus step, compute the
value of another one of the unknown functions, using one @fkrived Pythagorean
Identities.Usequadrant informatiorio decide whasignyou need to choose

[ll. Upon completing steps | and Il you would have the valuetheee (of the six) trigono-
metric functions. The remaining three values are obtairedgueither the Recipro-
cal/Ratio Identities, or the Product Identities.

Example 2.2.5. Supposer is an angle in thesecond quadranp@andtan o« = — 2. We will
find the remaining five values, using the three steps from tgel#aic Method.
1

. . . . . 1

I. Using reciprocals, we immediately findt o = : =3
. . .. an «

Il. Using the derived Pythagorean Identities, we can comput

sec @ = +v/1+tan?a = ++/1+ (=2)2 = £V/5.

Sincea is in thesecond quadrantwe know thatcos o< 0, so (remember that secant is the
reciprocal of cosine), we also know that o< 0. This means that the correct value for the
secant issec o = —+/5.

[ll. Find the remaining three values using reciprocals ardipcts:

1 1
cos o = - _ .
sec « V5’
n o=t 2 (-J5) =2
sin o = tan av-cos o = (— ) ==
V5 V5
1 V5
CcsC o = — -7
sin «v 2

The second method for solving our problem is based on thediiwade Method, which requires
that you “cook up” a point on the terminal side. (This is sanilo the Geometric Method outlined
in Section 1.2.)
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Coordinate Method for Solving the Basic Trigonometry Problem

I. Use the given value of one trigonometric functioncgf combined with thequadrant
information to produce a point on the terminal side, thatches the value of the given
trigonometric functionwhich amounts to producingvo numbers, out of, y, orr.

Il. Find the missing number, out of, y, r, using the identity

r=+z%+y?

combined with thequadrant information (If the missing number is either or y, the
guadrant information is useful for determining sign)

[ll. Compute all other five missing values using the formuimgen by the Coordinate
Method.

Example 2.2.6. Let us redo Example 2.2.5 using the Coordinate Method.

I. We need to produce one poiAfz, y) on the terminal side of our angle, based on our given
value. Based on the coordinate formulas, we know that thedowates ofA must satisfy the
equality

Y

Z=tana = — 2.
T

BecauseA is in quadrant I, we know thatr must be negative, ang must be positive, so a
valid point A could have coordinates= —1 andy = 2.
[I. The missing number is

r=vat ity =122 = V5

[ll. Using coordinates, the missing values are:

T 1 i 2

COSs 0 = — = — —; Sin @ = = = —;

V5 r 5

)

seca:f:—\/g; csca:_zg;
¢ 1
coto=—= — —.
2

. . 25 .
Example 2.2.7. Supposer is an angle in théourth quadrantandsec « = —, and let us find
the other five trigonometric functions, again using the dowate Method.

I. We need to produce one poiAfz, y) on the terminal side of our angle, based on our given
value. Based on the coordinate formulas, we know that thedawates ofA must satisfy the
equality

ro 25

T = SeCc & = 7 .
BecauseA is in quadrant I\, we know thatz must be positive, so a valid point could have
x = T7andr = 25.
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Il. The missing number ig, which by the equality: = /22 + y2 must satisfy25 = /72 + 32,
which yields7? + 1% = 252, or equivalently49 + > = 625, which givesy? = 625 —49 = 576,
thus:

y = £V/576 = £24.

Since our angle is iquadrant I\, we know thaty< 0, so the the correct value ig:= —24.
[ll. Using coordinates, the missing values are:

_x 7 . Ly 24
cos o = 55 sin o = o5
JR— JR— 25.
csca—y— 51
; Y 24 ¢ x 7
an === — —; cota=—= ——.
x 7’ Y 24

Values of Trigonometric Functions

So far, we learned how to compute the values of the trigonoafeinctions of some andfex
in one of the following instances:

e we are “lucky,” so the “special” poinP,, is given to us; or

e we know some point on the terminal side; or

e we know the value of one trigonometric function@ftogether with thejuadrantwherea

sits in.

What about the situation whenis given to us? For example, based on what we already know
about the “familiar” acute angles, as well as some easy aalsen P, can be easily located, we
can compile the following table, which contains what we apéng to refer to as théamiliar
values

ainradians| « in degreeg sin « | cos a | tan « cot sec « CsC v
0 0° 0 1 0 undefined 1 undefined
s 1 V3 1 2
- 30° e — V3 — 2
6 2 2 V3 V3
T 1 1
— 45° — — 1 1 2 2
1 5| & V2 V2
i V3 1 1 2
- 60° — | = V3 — 2 —
3 2 2 V3 V3
g 90° 1 0 undefined 0 undefined 1

Table 2.2.1

How about other angles? As it turns out, the calculationeftdues of the trigonometric functions

6 When we sayhe anglen, we mean the standard position angle that corresponds totidit@on measure.
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can always be reduced to the calculation of certain valuefiréb quadrant anglesas we shall see
shortly. Before we clarify this matter, one easy observasan order here:

Periodicity Property

If two rotation measures and differ by an integer multiple of one turn measgiteen their
trigonometric functionsgree

sin o = sin f3; cos v = cos [3;
sec o = sec [3; csc v = csc f3;
tan a = tan [3; cot o = cot [3.

CLARIFICATION. Saying thaty and g differ by an integer multiple of one turn measusehe
same as saying that their associated standard positioesiayle identical terminal sideghat is,
these rotation angles aceterminal For this reason, if we are in such a situation, we will allow
ourselves to abuse the language a little bit and saytlsetd 5 are coterminal

Example 2.2.8.To computesin 750°, we simply observe thatb0° = 30° + 2 - 3602, s0750° is
coterminal ta30° (as they differ by2 turns:2 - 360° = 720°), thussin 750° = sin 30° = %

Likewise, when we want to computen ( — 2‘%”) we use the fact thaﬂ%’f — 5 = —6br =
—3(2m), so—2~ andZ are coterminal (as the differ Byturns:3- (27) = 6), thustan (— 2) =
tanZT = 1.

4

CLARIFICATION. We can write the Periodicity Property is a concise algebnay, depending
on the unit we use (radians or degrees), as:

function(« + 2 n ) = functiona, (2.2.6)
function(a® 4+ n - 360°) = functiona®, (2.2.7)

for anyintegern, andfunctionany one of six trigonometric functionss, sin, tan, cot, sec, Or csc.

As we hinted at the beginning of this topic, most calculagiohvalues of trigonometric func-
tions are tied up to those for first quadrant angles, the pegelation being described with the help
of the following definition.

The reference anglea™' of a standard position angte is the measure of the geometric
angle formed by the terminal side with the “closest” half loét:-axis

CLARIFICATIONS. Reference angles are alwaysn-negative and no greater tha}frturn.
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A A

aref \ o \a ref

olef k oef

Figure 2.2.4

As suggested by Figure 2.2.4, depending of the quadraits in, its relationship to the refer-
ence angley'™, is characterized as follows.
(1) aisin quadrant |, if and only ifv is coterminal ton'®".
(1) aisin quadrant I, if and only ifv is coterminal tol turn —a®".
(i) «isin quadrant lll, if and only ity is coterminal to% turn 4",
(Iv) «isin quadrant 1V, if and only ify is coterminal to—a'" (or 1 turn —a'®",
(Of course, when using radians, we repldceirn with 7, and1 turn with 27. Likewise, when
using degrees, we replaéeturn with 180°, and1 turnwith 360°.)

The “big deal” about reference angles is contained in thieviehg statement, which will be
justified a little later.

Reference Angle Theorem

The values of the trigonometric functions of any rotatiomswex coincideup to a possible
sign change (depending on the quadramith those of the reference anglé":

sin o = +sin o, cos o = + cos o'
sec o = +sec o' cse o = +ese o
tan o = + tan o' cot o = =+ cot o

Example 2.2.9. Computesin(—36225°) andcos(—36225°).

Solution By the Periodicity property, adding an integer multiple366° will not change the
values. This will happen for instance, if we a8iéD00° = 100 - 360°. In other words, the angle
a = —36225° is coterminal with—36225° + 36000° = —225°. Adding anothe360° will not
change the values, so our anglés also coterminal with-225° + 360° = 135°. Now we notice
that135° = 180° — 45°, which tells us that

e the anglen = —36225° sits in quadrant I, and

e its reference angle isi™" = 45°,
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and consequently:
sin(—36225°) = £sin45° and cos(—36225°) = + cos 45°.

Because sits in the second quadrant, the correct values are:

1
sin(—36225°) = +sin45° = 7 and cos(—36225°) = —cos45° = —

S~

The “Four Point Game”

As it turns out, the Reference Angle Theorem follows from ey\&@mple geometric observa-
tion, which is summarized in Table 2.2.2 below, which expgaivhat happens if we change an
anglea, using certain transformations for which it is very easy ¢éef track of coordinates. For
simplicity, we assume that we work in radians.

A

Pﬂ'*a Pu,

PTF+O¢ P_o=Por_q

Y

Figure 2.2.5

oa— ? P,— ? coordinates— ?

T— reflect aboug-axis (x,y)—(—z,y)

T+« | rotates turn about origin| (z, y)—(—z, —y)

2T — « reflect about:-axis (x,y)—(z, —y)
— same asrm — «

Table 2.2.2

As a consequence of these features, we obtain the followimgfla packages, which are very
useful when computing trigonometric functions.

Supplement Formulas:
sin(r—a) = sin «; cos(m—a) = — cos «;
sec(m—a) = —sec «; cse(m—a) = csc o

tan(m—a) = — tan «; cot(r—a) = — cot a.
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Add 7 Formulas:

sin(m+a) = —sin o cos(m+a) = — cos o
sec(m+a) = —sec ; cse(m+a) = — esc o
tan(m+a) = tan o; cot(m+a) = cot a.

Formulas for Negatives:

sin(—a) = sin(2r—a) = — sin «; cos(—a) = cos(2m—a) = cos «;
sec(—a) = sec(2m—a) = sec «; cse(—a) = cse(2mr—a) = — csc q;
tan(—a) = tan(27—a) = — tan «; cot(—a) = cot(2r—a) = — cot «;

@ Even though Figure 2.2.5 illustrates only the special cadsenw: is in quadrant |, similar
figures can be drawn that cover all other possibilities, sonatter which quadrant sits in, the
four pointsP,, P, ., P..., and P_, (which is same a$’,, ) will always form a rectangle
centered at the origin, with sides parallel to the coordimates. Thughe above identities, as well
as the features collected in Table 2.2.2 are still valid,day value oty, regardless of quadrant!

Exercises

In Exercises 1-5, find all six trigonometric functions of tmegle«, based on the fact that a
certain pointA sits on its corresponding standard position angle. Uset @sautes!

1. A(3,-4).
2. A(—8,15).
3. A(—12,-16).
4. A(-8,0).

5. A(0,—15).

In Exercises 6—15, find the values of all remaining trigonsioéunctions of the angle, based
on a given particular value, and the given quadrant infolmnatUse exact values!

6. sino = 3, «win quadrant |.

7. sina = %, acin quadrant Il

8. sina = —2, ain quadrant Ill.

9. sina = —5, avin quadrant IV.
10. cosar = —2, avin quadrant I1.
11. cosaw = —12, ewin quadrant I1l.

12. tana = 2, ovin quadrant 1l

13. tana = —3, v in quadrant IV.
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14. seca = 5, a in quadrant IV.

15. csca = 10, a in quadrant 11
In Exercises 1619, find the reference angRfor the given angle.
16. o = 1234°

17. a = —2013°
18. a = 12 (radians).

19. o = —30 (radians).
In Exercises 20-28, find the exact valuesiafa andcos «, for the given angle.
20. a = —405°

21. a = 300°

22. a = 330°

23. o = 12 (radians)

24. o = — 17 (radians)

25. a = 1000~ (radians)

26. o = 227 (radians)

27. a = —1227 (radians)

28. a = 22217 (radians)

29. Givensina = —1, find the exact values afn(—a), sin(r — ), andsin(r + «).
30. Giventan a = 17, find the exact values afin(—«), tan(m — «), andtan(r + «).

31. Givensec a = -8, find the exact values @bs(1237 — «) andcos(1237 + «).

In Exercise 32-35, findin o andcos «, based on the given information about the terminal side
and the quadrant of the corresponding standard positiole adge exact values.

32. The angle is in quadrant Il and the terminal side is oritteedz — 3y = 0.
33. The angle is in quadrant Il and the terminal side is palralthe linedx + 3y = 7.
34. The angle is in quadrant IV and the terminal side is partdithe line2xz + 3y = 5.

35. The angleisin quadrant Ill and the terminal side is pedprilar to the lind 22+ 5y = 100.
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2.3 Trigonometric Identities

As we learned in Algebra, adentity is an equality of the form
(Left) Expression= (Right) Expression

where each side is areXpressiori that is some quantity that can be written using algebraic o
erations and involving certaifunctions and variablesThe most common functions used in the
identities we learned about in Algebra grewers radicals, exponentialsandradicals Here is a
sample list of identities we are all familiar with from theg&bra course:

(z+y)(z—y) =2 —y% (2.3.1)
(x +1y)* = 2% 4+ 22y + v% (2.3.2)

(x —y)?* = 2% — 20y + v (2.3.3)
(Vz)" = (2.3.4)

Va2 = |z]. (2.3.5)

The identities (2.3.1), (2.3.2) and (2.3.3) are examplelehtities intwo variables The identities
(2.3.4) and (2.3.5) are examples of identitiegire variable

To verify an identity means to show thdtoth expressions are equal, whenever both of thgm
are defined

CLARIFICATION. When looking at the above list of examples, the clausbénever both
(sides) are definédvill be meaningful only when dealing with (2.3.4), in whithe left-hand side
is not always defined. (Whenis even the left-hand side is only defined, wher> 0.)

A trigonometric identity is one in which both sides involve algebraic operations, room
algebraic functionsand trigonometric functions

The basic “toolkit”

When verifying trigonometric identities, our basic “toafkwill consist, at a bare minimum, of
the packages that make the “Holy Grail” of Trigonometrytisathereciprocal, ratio, product and
Pythagorean identitiesAs we progress in the Trigonometry course, we will expand‘tmolkit”
to include more and more formulas. For instance, based ofFthe Point Game” we obtained
three additional packages:

- )

Supplement Formulas

sin(m—a) = sin «; cos(m—a) = — cos «;
sec(m—a) = —sec «; cse(m—a) = csc o

tan(m—a) = — tan «; cot(r—a) = — cot a.
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Add 7w Formulas

sin(m+a) = —sin o cos(m+a) = — cos
sec(m+a) = —sec o cse(m+a) = — csc o
tan(m+a) = tan o cot(m+a) = cot a.

Formulas for Negatives

sin(—a) = sin(2r—a) = — sin «; cos(—a) = cos(2r—a) = cos «;
sec(—a) = sec(2m—a) = sec «; csc(—a) = cse(2mr—a) = — csc q;
tan(—a) = tan(27r—a) = — tan «; cot(—a) = cot(2r—a) = — cot «;

Lastly, one more package is available, inspired by what \eenked in Section 1.2 aboub-
functions

Complement Formulas
sin (5 —a) = cos a; cos (5 —a) =sin a;
sec (5 —a) = esc a; csc (5 —a) = sec o;
tan (5 —a) = cot a; cot (5—a) = tan a.

CLARIFICATION. The Complement Formulas hold fany angle not just for acute ones. The
easy way to see why they work is to see what transformatiensraployed, when we want to pass
from the “special” point”, to the “special” point”r ..

I. First, we move fromP, to P_,, which means that we doraflection about the:-axis, so
if we write vector coordinatey , = { “; },thenﬁa = { _xyl

Il. Second, we rotate by2, so we multiply by the rotation matriyy = , = R P _a, so the

position vector ong,a will be

s e N R R F R R
Pz_a= . T . = . = 5

sin oS % —y 1 0 —y T
so the coordinates df - ,,, that iscos (2—a) andsin (3 —«), are the same as those Bf,, that
IS, cos o andsin «, except that they are flippeth other words, we have the identities

(NE]
INIEIIE

sin (g—a) = COs «,

cos (g—a) = sin «,

from which the other four immediately follow.

Verifying Identities by the Left-to-Right (or Right-to-Le ft) Method

The most direct method for verifying a trigonometric idénis to start with one side, and
transform it (in several steps) into the other side
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Example 2.3.1. Suppose we want to verify the identity

1

tant +cott = ——.
sintcost

We start with the left-hand side (hereafter abbreviatedS)l.and transform it into the right-hand
side (hereafter abbreviated as RHS) in four steps:

LHS = tant + cot ¢

sint  cost — _
= + — < | ratio identitieg
cost sint
sin? ¢ cos? t : . : .
= — + — — ‘ equivalent fractions, with same denomlnz%tor
sintcost sintcost

sin?t + cos® t :

= — |comb|ne numeratonfs

sintcost

1 ; ;

= — ‘ the Pythagorean Identityn® ¢ + cos®t = 1
sintcost

= RHS < |DONE!

Example 2.3.2. Consider the identity
cscz(sin(—x) + cscx) = cot® x

As it is always better if we deal with functions of one angléypaur first step in simplifying LHS
will get rid of sin(—xz):

LHS = csc z(sin(—x) + cscz) = csc(—sinz + csc x) < | formula for negatives:

sin(—z) = —sinx

= —cscasinz 4+ csc?x = —1 + esc® x <— | multiply, then use reciprocal identityn z = ,
CsCx

which givescsc zsinz = 1

=—1+(1+cot’z) = —1+1+cot’z = cot’x < | use Pythagorean identity

csc?x =1+ cot?z,

open up, then cancel thes

_RHS  « [DONE]

In certain instances, the identity we need to verify is qodmplicated, and there is no obvious
way to transform one side into the other. One choice is susbscaould be teransform the entire
identityinto a new identity, which igquivalent to the original identity

Example 2.3.3. Consider the identity

secu + 1 _ tanu

tan u secu — 1
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Since this identity is @roportion we can write an identity equivalent to it, but which is indtian-
less form?

(secu + 1)(secu — 1) = tan? u.

This new identity (which isquivalentto the given one) can be verified by transforming the left-
hand side into the right-hand side in three easy steps:

LHS = (secu + 1)(secu — 1)
=sec?u—1 — ‘ difference of squaregA + B)(A — B) = A? — B? ‘

= (1 +tan®u) — 1 — ‘the Pythagorean Identitygc? u = 1 + tan® u ‘

=1+tan’u — 1= tan’u — ‘“open up” parentheses, then cancellhq

= RHS < |DONE!

The “Three-Way” Method

When handling more complex identities, there are many mt&ts when we do not see any
clear way for transforming one side into the other, so ouraggh will be to “divide and conquer.”
So if we look at an identity of the form

LHS = RHS

what we may try is tdransform each side separately into newer/simpler exjpoasswith the
expectation thathe newer expressions coincide

Example 2.3.4. Consider the identity
(cos@ 4 1)(secf — 1) = cosf tan® 6,
which we are going to verify by the “three-way” method, in wiive work on each side separately:

LHS = (cosf + 1)(secf — 1)

= cosfsecl — cosf +secl — 1 — ‘ multiply out (fold)‘
. 1

=1—-cosf+ -1 <— | use reciprocalsiec ) = ——, socosfsec = 1

cos cos 6

1 cos? 6 1 1 — cos? 6 :
= —cosf + = - + = < | cancell’s and subtract fractiors

cosf cos)  cosf cos 6

B sin” §

= — ‘ Pythagorean identityt — cos? # = sin® # ‘
cos 6

Stop here: this is your (new) LHS.

O

7 We know that9 = — can be transformed by cross-multiplication into an eqeirtform:© - & = & - .

o &
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Now we work on the right-hand side:

RHS = cosftan’ 0

sin 6\ 2 sin? 4 o sin §
= cosf =cosf - —— < | use ratio identitytan § =
cos @ cos? 6 cos

cos@sin?6  sin’0

= < | multiply and simpli
cos? 6 cos 6 ‘ Py P fy‘

= (new) LHS= (old) LHS =«

Example 2.3.5. Consider the identity

COoS & .
——————— =c¢sco — sin a.
sin asec «v

We will simplify each side to a form that uses only sine andrm®s For a change, we start this
time with the right-hand side

RHS = cscar — sin «

1 . 1
= — — sin« < | replacecsc o = —
Sl & S1n v
1 sinfa 1 —sina _ .
= — — — = - — ‘ manipulate fracﬂonF
sina  sina sin o
cos? o

= — — ‘ use Pytagorean identity— sin? v = cos? a ‘
sin o

Stop here: this is your (new) RHS.

Next we work on the left-hand side

LHS — COS «x

sin ar sec o

cos « 1

= < | replaceseca =

. 1 cos o
sin « -

COS v

COos COsS COs« 0082 (0%

= — = e‘manipulatefractionb
sin « 1 sin « sin o

COos &

= (new) RHS= (old) RHS < | DONE!




CHAPTER 2. TRIGONOMETRY BEYOND ACUTE ANGLES 85

TIPS:

1. The “three-way” method is preferred, unless one sidengkd enough, in which case
you can use the left-to-right (or right-to-left) method.

2. When simplifying each side, aim at expressions that usevasrigonometric functions
as possible.

3. The preferred simplified expressions are those using €inky & cosine. Other “nice”
pairs of functions one can use are tangent & secant, or cetd&iggcosecant.

False Identities

There are many instances when, although we are temptectaédain equalities as identities,
what we see in fact affalse identitiesthat is,identities that are not trueAs a simple rulein order
to show that an equality is false identity all we need i®one valuefor the variable(s), for which
theequality fails

Example 2.3.6. Consider the equality

coS (:)3 + g) = Ccos T + cos g (2.3.6)

In order to show that this is a false identity, all we needrisvalue ofz, that “breaks” the equality.
The simplest value is, for instanege= g Indeed, when we compute both sides of (2.3.6), we get:

LHS = cos (g + g) =cosm = —1;

RHS:(:osz—l—cosz =04+0=0.
2 2
CLARIFICATION. As we saw in the above Example, the equality (2.3.8)isan identity! One
can still ask if it is possible to “fix” a “broken” (false) idéty. Looking at (2.3.6), we can in fact
think of two ways of “fixing” it: either
(A) keep the left-hand side as it is, and try to find a right-hadd expression that matches it,
or more interestingly,
(B) find the values of (if any), for which the equality does work!
When approaching this matter as B) (what we are in fact doing is treating (2.3.6) asguation,
which we then try to solve for. Actually, both plans4) and @) can be carried on at the same
time, based on the formulas for complements and for negatberause we know that
s

cos (z + 5) = cos (5 — (=) =sin(—z) = —sinz.

So if we want to “fix” (2.3.6) into a true identity, we can write

oS (x + g) = —sinz, (2.3.7)

which is a valid identity. At the same time, if we treat (2)3a68 anequation then using (2.3.7) as
well as the obvious simplification RHScos x (based oreos g = 0), we can rewrite it as

—sinz = cos x, (2.3.8)



86 2.3. TRIGONOMETRIC IDENTITIES

which is equivalent to:
tanx = —1. (2.3.9)

So now we see, that solving (2.3.6) is equivalent to solving.9), which is one of the basic
trigonometric equations we will learn about in Section 2.7.

@Why are the equations (2.3.8) and (2.3.9) really equiv@ldhtappears that when getting
from the first equation to the second one we dividecbyx, so we need to be careful with the
possibility thatcos x = 0. However, wheros x = 0, it is impossible to havein =z = 0 at the same
time (by the Pythagorean identitin® = + cos? z = 1), and this means thathen dividing by-os =
we do not loose any of the solutions(@t3.8), because for every solution of (2.3.8) it is impbksi
to havecos x = 0.

CLARIFICATION. The same way we derived the identity (2.3.7), by writing T_T_ (—x)

and using the formulas for complements and for negativesamaipgrade our “toolbox” with the
following formula package.

Anti-Complement Formulas
sin (g+o¢) = COs «q; cos (g+o¢) = —sin «;
s
sec (§+a) = —CSc Cse (§+a) = sec «;
s s
tan (§+a) = —cot «; cot (§+a) = —tan .

We use the word “anti-complement” as a shortcut for “compatrof the negative.” One can
also consider theegative complemeiof somea, that is,a—g = —(g — a), for which we can
easily derive the following identities.

Negative Complement Formulas
sin (a—g) = — COs q; cos (a—g) = sin «;
sec (Oé—g) = CSC & CSC ((X—g) = — SeC «;
tan (a—g) = — cot q; cot (a—g) = —tan «.
Example 2.3.7. Consider the equality
V1 —cos?t =sint (2.3.10)

Although this equality almost looks right, it is still falsbecause the value= —g “breaks” it.
Indeed, using the formulas for negatives we have

cos(—g) :cosgzoandsin(—g) :—sing:—l,
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so when we compute the two sides of (2.3.10) for this padicuhlue oft, we get

LHS:\/1—cos2(—g):\/1—02:ﬁ:1;
a2 Ty -
RHS—sm( 2) 1.

If we view (2.3.10) as an equation, then unlike what we savhengreceding Example, we will
have an abundance of solutions, which can be “bunched invaiy’ as we shall see shortly. For
this reason, treating (2.3.10) as an equation is not irttagesso the better way to “fix” it is by
coming up with the correct identity. One easy way to get ow”“f$ to use the Pythagorean
identity 1 — cos? t = sin” ¢, combined with the basic algebra identity (2.3.5), so theam identity

in place of (2.3.10) is
V1 —cos?t = } sint‘ (2.3.11)

which does work for all values af When comparing the right-hand side of the correct identity
(2.3.11) with the right-hand side of (2.3.10), we see thatwealld get a good match, precisely
whensint = | sint|, which is the same as saying that ¢ > 0. Since we know exactlyin¢ > 0,

one way to “fix” (2.3.10) is also to write:

V1 —cos?t =sint, if tisin quadrants | orll (2.3.12)

The above presentation is an example of a vatidditional identity. We now see that, when
thinking (2.3.10) as aequation it will have as solutions, for exampkd! ¢ in [0, 7], but alsoall
tin [2m, 3], all tin [47, 57], etc. and alsall ¢ in [—27, —x|, all ¢ in [—47, —37]|, etc. (More on
this “huge” solution set will be clarified in Section 2.4.)

Exercises
In Exercises 1-13, you are asked to verify the given identity

1. sect — cost = tantsint.

2. cosz + sinz tanx = sec x.

cscla —1 )
3. ——5—— =cos" .
csc? o

4. (tans+ cot s)(sins + cos s) = sec s + csc s.

1 1
5. . + . = 2sec? w.
l—sinw 1+sinw

6. (sinf + cosf)? = 1 + 2sin f cos .

1
7. oSy (cscy + cot y)?.
1 —cosy

8. sin®t — cos*t = sin®t — cos? t.

9. sin (377? +x) = —cosz.
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10. cos (37% + x) = sin z.

11. cos(m — ) + cosz = 0.
12. cse(—z) + sinz = cos? z cse(—1x).

tanu — cotu
13, ———————— = secu — cscu.
S u + cos u

In each one of Exercises 14-20, you are given a certain eguahich you are asked to show
that is afalseidentity, so you need to findnevalue for the variable, for which the equality is not
true. In each Exercise, you are also asked to find one valueeofdriable for which the equality
does hold.

14. (sinx + cos )3 = sin® x + cos® x.
15. (tant — cot t)? = tan®t — cot? .
16. sin(—z) = sin z.

17. cos(—x) = —cos .

18. sin(z + 7) = sin z.

19. cos(x + m) = cos x.

20. sin(2x) = 2sin z.

2.4 Graphs of Trigonometric Functions

In this section we take a closer look at the trigonometricfioms by analyzing theigraphs.
Recall thatgraphing a function/ means tglot all points P(z, y) in the coordinate plane, whose
coordinates satisfy:

y = f(x), withzinthe domain off.

The set of all points that are plotted according to the abogeipe” is what we call thgraph of
the function.

Graphs are very useful tools because they tell us quite abiftecertainalgebraic features
of the function which can be characterizegtometrically asfeatures of the graph The table
below summarizes all the features we are interested in, @halyzing functions and their graphs.
(Certain items are detailed following the table.)

FEATURE OF f ALGEBRAIC DESCRIPTION GEOMETRIC DESCRIPTION

Domainof f Set of allz, for which f(x) is de-| All vertical linesthatintersect the
fined graph
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“Forbidden” Values ofz, for which f(z) isnot | Vertical lines thatlo not intersect

x-values defined the graph in most cases, thes
lines are thevertical asymptotes
of the graph

Rangeof f Set of all values off (z) All horizontal linesthatintersect
the graph

Value atr = 0 Special valuey = f(0), if defined | They-intercept of the graph

Zerosof f Solutions of the equation Thez-intercepts of the graph

f(x) =0

Interval(s) where
f isincreasing

Interval(s) wheref (z;) < f(x2),
wheneverr; < s

Piece(s) of the graph thatimbs
as we scan them from left to righ

—

Interval(s) where
f is decreasing

Interval(s) wheref (z1) > f(x2),
wheneverr; < s

Piece(s) of the graph thdescend
as we scan them from left to righ

—

Interval(s) where
f is constant

Interval(s) wheref (z,) = f(x3),
foranyzq, xs

Piece(s) of the graph that aner-
izontal

f has alocal max-
imum value at

fla) > f(x), for all x is some
open interval containg; in this
case,f(a) is called alocal maxi-
mum value off

“Peaks” in the graph

f has aocal mini-
mum value at

fla) < f(x), for all x is some
open interval containg; in this
case,f(a) is called alocal mini-
mum value off

“Valleys” in the graph

—F

fiseven f(=z) = f(x), for all z in the | Graph issymmetric with respec
domain to they-axis

fisodd f(=z) = —f(z), for all z in the | Graph issymmetric with respec
domain to the origin

—F

Table 2.4.1

CLARIFICATIONS. Thez-interceptsare, of course, the-coordinates of the points where the
graph intersects the-axis. Likewise, they-interceptis the y-coordinate of the point where the
graph intersects thg-axis. To recover the domain of the function from the graph,asllect all
vertical lines that intersect the graph, and then we cotlei-intercepts of these lines. Likewise,
to recover the range of the function from the graph, we codétorizontal lines that intersect the
graph, and then we collect theintercepts of these lines.

Periodicity
This feature, which is one that is specific to trigonometuiedtions, is defined as follows.
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A function f is said to beperiodic, if there exists some numbér > 0, such that
f(z+ P) = f(x), for all z in the domain off.

Thesmallest positive numbét, that satisfies the above condition, is calledjteeod of f.

______________

\4

Figure 2.4.1

The graph of a periodic function exhibits a nice “tile” pattewhich is illustrated in the above
picture. To graph such a function, all we have to do is to felthese steps:
l. Fix some interval ofength equal to the periqavhich we will hereafter call &indamental
interval.
[I. Graph the function over such an interval, thus creatifignaster tile” for the graph.
[ll. Copy (and paste) the “master tile” repeatedly to the &fd to the right, so the picture of
the graph is made of “tiles,” each looking exactly as the “raasle.”
Every time we want to move from one tile to the next one on tghtriwe plot the same points,
except that we replace thecoordinate using: — x + period (When we move to the left we
replacer — = — period)
Periodicity (if present) is very helpful, when we want tovao¢lementary equationsvhich are
those of the form
f(x) = number (2.4.1)

For such equations we will often apply the following method.

Elementary Equation Solving Method for Periodic Functions

If f is a periodic function, in order to solve an equation of therfq2.4.1), we do the
following:
I. We fix afundamental intervaland we first solve the equation in this interval; we call the
solution(s) we obtain thbasic solution(s)
[I. Once the basic solutions are fourslery solutionr of (2.4.1) is of the form:

x = basic solution+ integer multipleof period (2.4.2)

CONVENTION: When treating trigonometric functions in this sectiore assume all rotation
measures are in radians
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Periodicity of Trigonometric Functions

(A) The trigonometric functionsn, cos, sec andcsc are all periodic, with period.
(B) The trigonometric functionsan andcot are periodic, with periodr.

CLARIFICATION. StatementA) was discussed in Section 2.2. StatementwWas treated in
the same Section, as part of the “Four Point Game.”

The Graph of the Sine Function

Using the method outlined above, in order to graph the sinetfon, that is, to ploy = sin z,
all we need is dundamental intervaland the “master tile.” Although any interval of length
will do the job, we prefer to choose the fundamental intetedle: [0, 27). The graph of the sine
function, together with the fundamental interval of our iceo(shown in green) and the “master
tile” (shown in purple), is depicted in the figure below.

‘\//\\/%\\//\\/f

Figure 2.4.2

Features of the Sine Function

(i) Domain= all real numbers

(i) Range=[—1,1]

(i) y-intercept=0

(iv) z-intercepts= nm, n integer

(v) absolute maximum value 1, atz = 7 + 2n7r, n integer

(vi) absolute minimum value: —1, atz = —Z + 2nm, n integer

(vii) increasingon all intervals of the forn{ = G aF 2n7r 5 4 2nﬂ n integer
(viii) decreasingon all intervals of the forr‘r{2 + 2nm, 3T + 2nﬂ n integer

(ix) even/oddsine function isodd

(X) period= 2r; preferred fundamental intervdD, 27)

CLARIFICATIONS. Most of these features can tvaced back in the “master tile,” which is the
piece of the graph over the fundamental interfiaPRr).
For example, when looking far-intercepts, which mean solutions of the elementary equoati

sinz = 0, (2.4.3)

then by the method outlined above, all we have to do is to findb#isic solutions, which arg = 0
andz, = 7, because alt-intercepts are presented as either

(a) of the form0 + 2n7 = 2nm7, with n integer, or

(b) of the formn + 2nm = (2n + 1), with n integer.
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What we see in botfu) and(b) are twolists of numberswhich can be easily combined in one list,
as indicated aboventeger multiples ofr.

Likewise, if we look for maximum values, which mean solusasf the elementary equation
sinx =1, (2.4.4)

then the basic solution will bg, and therall solutions of (2.4.4) will be of the formz* = 7+
integer multiple of27.” Therefore, all peaks will be:

peak = (g + 2nm, 1), n integer

Same goes for valleys, which correspond to the solutions of

sinz = —1. (2.4.5)
The basic solution of this equation?g‘s, soall solutions of (2.4.5) will be of the formz* = 3§+
integer multiple of2z.” It is convenient here to observe th%‘-t = —5 + 2w, and then the above

description of all solutions of (2.4.5) will also b&r = —5+ integer multiple oR27.” Therefore,
all valleys will be:

valley = ( — g + 2nm, —1), ninteger
As for intervals, where sine iacreasing or decreasingthey will be of the form[;r;va”ey, ;cpeak] ,

or [;r;pea% ;L-\,a"ey], in an alternating pattern. The peak that follows a valleghesclosest on on the
right, which is7 units away; same goes for valleys that follow peaks, so ottepeis:

sine isincreasingon intervals of the form{zaiey, Zvaiey + 7|
sine isdecreasingn intervals of the form{zpeax. Zpeax+ 7]

Using what we have learned so far, we can now outline a methsdleing theelementary
sine equationswhich are those of the form

sin x = number (2.4.6)

As it turns out, the method depends slightly on the value efright-hand side. Based on the
features of the sine function, we already know how to hanolle €ases, which we summarize as
follows.

8 This pretty clear, becauéézﬂ + multiple of 27" is same a$—75 + multiple of 2r.”.
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The “Easy” Sine Equations

(a) If numberis not in the interval—1, 1], then the equatio(®.4.6)hasno solution

(b) if number= —1, then all the solutions o0f2.4.6)are of the form:z = —g +2nm, n
integer.

(¢) if number= 1, then all the solutions of2.4.6)are of the form:x = g + 2nm, n integer.

(d) if number= 0, then all the solutions of2.4.6)are of the form:z = nr, n integer.

The remaining case, which we will call the “hard” sine eqoatheeds to be treated in a special
way, in which the first step will be the solving of thesociated reference angle equation

sin(z"") = [numbet, z"™"in [0, g} (2.4.7)

Note that the right-hand side of (2.4.7) usesdbeolute valugand based on the given restriction,

the equation hasaique solutionOnce the reference angle equation is solved, the “harcitemu
can be solved as follows.

The “Hard” Sine Equations

Assume—1 < number< 1 with number# 0, andz"" is the unique solution of the associ-
ated reference angle equation (2.4.7).
I. The original equation(2.4.6) will always havesxactly two basic solutiondDepending
on thesignof numbey these basic solutions are as follows.
(a) If numberis positive the two basic solutions are:;, = 2" andz, = 7 — 2™,
(b) If numberis negative the two basic solutions are:; = 7 + 2" andz, = 27 — 2"
II. Once the basic solutions are foureery solution: of (2.4.6) is of the form:

x =z, + 2nm, n integer, or
T = x9 + 2nm, n integer.

CLARIFICATIONS. The fact that the “hard” sine equation has alwaye basic solution$ol-
lows from the “Four-Point Game” (see Section 2.2, espschiljure 2.2.5), by which we know
that, given anyv in [0, g} , the other rotation angles |f, 27| that haver as their reference angles
are:m — o, ™+ o and2m — a.

For the “hard” sine equation, the two possibilities diseasabove are illustrated in the two
figures below.

number |

1

MIE]

8

¥
< |

N
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Figure 2.4.3

The figure above depicts ca&e), when the right-hand side of (2.4.6) is positive. One of the
two basic solutions lies ifi0, Z] — quadrant I; the other one lies j§, | — quadrant L.

A

3T

< . moro2  *2 2
< i T T T >
2
number T
v
Figure 2.4.4

The figure above depicts cafle, when the right-hand side of (2.4.6) is negative. One of the
two basic solutions lies ifir, 2| — quadrant 1il; the other one lies {#Z, 27| — quadrant IV.

Example 2.4.1. Suppose we want to solve the equation

3
sing — g (2.4.8)
The associated reference angle equation is
sin(2"") = \/7? 2""in [0, g}

which clearly (based on the “familiar” values of sine for seangles), has the solutiaff’ = %

Following the method outlined above the two steps go asvallo
I. Since the original (given) equation has positive rigatit side, the two basic solutions of
(2.4.8) are
T
T = l,ref — g;
2
po=m—a =g =T

3 3

II. Using the above basic solutiora] solutionsof (2.4.8) are:

T = g + 2nm, n integet

2T .
T = 5 + 2nm, n Integer

Example 2.4.2. Suppose we want to solve the equation

1
sinx = —3 (2.4.9)
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The associated reference angle equation is

ref) _ 1 xref in [0

sin(z") = 5 ,5]

which clearly (based on the “familiar” values of sine for seangles), has the solutiafff = %

Following the method outlined above the two steps go asvallo
I. Since the original (given) equation has negative rigiatdhside, the two basic solutions of

(2.4.9) are
I

ref T
TG =T+T =T+ —==—,
6 6’

B 117

f:27r—z .
6 6

To =21 — '

II. Using the above basic solutiora] solutionsof (2.4.9) are:
I

T== + 2nm, n integet
117 .
Tr = 5 + 2nm, n Integer

The above technique for solving elementary sine equatieneiy inefficient. We will

revisit it in Section 2.6.
There are cases, when we only want to solve an elementarggiraion in a specified interval.

In these instances all we have to do idital the values of the integer, for each list of solutions,
which yield the corresponding general solution in the sfediinterval

Example 2.4.3. Suppose we want to solve the equation

sinx = —0.6. (2.4.10)
in the interval[—m, 57]. As we see from the graph below, this problem has six solstilisted in
increasing orderzy, xs, x3, 14, -5, 5, Where the basic solutions arge andz,.

I3 Ty Is Te

X1 i)

A

—0.6

Figure 2.4.5

The associated reference angle equation is

sin(2"®) = 0.6, 2™"in [0, g},

which can be solved on a calculator (using function;do not forget to set the calculator
to work in radians): 2™ ~ 0.643501109. Following the method outlined above the two steps go

as follows.
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I. Since the original (given) equation has negative rigiatdhside, the two basic solutions of
(2.4.10) are

23 =7 + 2" ~ 1+ 0.643501109 ~ 3.785093762;
2y =21 — 2" ~ 27 — 0.643501109 ~ 5.639684198.

II. Using the above basic solutiora] solutionsof (2.4.10) are:

x = x5+ 207 ~ 3.785093762 + n - 6.283185307, n integet (2.4.11)
T = x4+ 207 ~ 5.639684198 + n - 6.283185307, n integer (2.4.12)

With these calculations in mind, we need to see
(i) what values ofn can be plugged in (2.4.11) to yield numbers in the intefvat, 57| ~
[—3.1441592954, 15.70796327], and likewise,
(i) whatvalues of: can be pluggedin (2.4.12) to yield numbers in the same iaténsr, 5] ~
[—3.1441592954, 15.70796327].
Equivalently, we need to find how the other four solutionsz,, x5, x4 are linked to the basic
solutionses, x4.
For question (i), it is clear that the only values that workha list (2.4.11) are. = —1,n =0
andn = 1. Equivalently, among our four additional solutions, thesthat are in the list (2.4.11)
are:

xry = x3 — 21 ~ 3.785093762 — 6.283185307 ~ —2.498091545,
x5 = x3 + 2m ~ 3.785093762 + 6.283185307 ~ 10.06827907.

Likewise, in question (ii) the only values that work in thstl{2.4.12) are again = —1,n = 0
andn = 1. Equivalently, among our four additional solutions, thesthat are in the list (2.4.12)
are:

Ty = x4 — 21 ~ 5.639684198 — 6.283185307 ~ —0.6435011009,
T = x4 + 21 =~ 5.639684198 + 6.283185307 ~ 11.92286951.
So our conclusion is that equation (2.4.10) Bassolutions in the interval-=, 57|, which

are (approximatively):z; = —2.498091545, x5 = —0.643501109, x5 = 3.785093762, r, =
5.639684198, x5 = 10.06827907, andxzg = 11.92286951.

The Graph of the Cosine Function

Graphing the cosine function is executed in the exact sanmaenas with sine. Odundamen-
tal interval will again be:|[0, 27). The graph of the cosine function, together with the fundatale
interval of our choice (shown in green) and the “master tii#fown in purple), is depicted in the
figure below.

N, T SN .
S—am NS i NS 2 N an
—1

Figure 2.4.6
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Features of the Cosine Function

(i) Domain= all real numbers

(i) Range=[—1,1]

(ii)) y-intercept=1

(iv) z-intercepts= 7 + nm, n integer

(v) absolute maximum value 1, atz = 2nm, n integer

(vi) absolute minimum value- —1, atz = 7 + 2nm, n integer
(vii) increasingon all intervals of the forn{ — T+ 2nm, 2n7r] , n integer
(viii) decreasingon all intervals of the form2nr, = + 2n7|, n integer

(ix) even/odd cosine function igven

(X) period= 2r; preferred fundamental intervdD, 27)

CLARIFICATIONS. The easiest way to see why the cosine function has the abatugés is to
use the following well known fact from Algebra.

Horizontal Shift Rule for Graphs

If two functionsf andg are related by the identity

g9(x) = f(z—h),

thenthe graph ofg is obtained from the graph of by a horizontal shift of: units In
particular,

e if h is positive the horizontal shift will “push” the graph of to theright;

e if h is negative the horizontal shift will “push” the graph of to theleft;

Since, using the Anti-Complement Formulas, we have
cos & = sin (x + g),

it follows thatthe graph of the cosine function is obtained from the grapthefsine function, by
“pushing” it to the left by 7.

?P Why do we “push” the graph of sine to theft to get the graph of cosine? When we work
with f(x) = sinz andg(z) = cosz, these two functions are related as in the Horizontal Shift
Rule, withh = —7, so the shift that gets us from the graphyofo the graph of; will be indeed
towards the left.

We can now also outline a method of solving #lementary cosine equatignghich are those
of the form

cos x = humber (2.4.13)
As was the case with the sine equation, the method again destightly on the value of the

right-hand side. Based on the features of the cosine fumatie already know how to handle four
cases, which we summarize as follows.
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The “Easy” Cosine Equations

(a) If numberis not in the interval—1, 1], then the equatiofR.4.13)hasno solution

(b) if number= —1, then all the solutions o0f2.4.13)are of the form:z = 7 + 2n71, n
integer.

(¢) if number= 1, then all the solutions of2.4.13)are of the form:x = 2n7, n integer

(d) if number= 0, then all the solutions of2.4.13)are of the form:xz = g + nm, n integer.

Exactly as was we did with the sine equation, the remainisg,cahich we will call the “hard”
cosine equation needs to be treated in a special way, in whefirst step will be the solving of
theassociated reference angle equation

cos(z") = [numbet, z""in [0, g] (2.4.14)
As before, the right-hand side of (2.4.14) usesdheolute valugand based on the given restric-
tion, the equation hasanique solution Once the reference angle equation is solved, the “hard”

eqguation can be solved as follows.

The “Hard” Cosine Equations

Assume—1 < number< 1 with number# 0, andz"" is the unique solution of the associ-
ated reference angle equation (2.4.14).
I. Theoriginal equation(2.4.13) will always havexactly two basic solution®epending
on thesignof numbey these basic solutions are as follows.
(a) If numberis positive the two basic solutions are:; = 2" andz, = 27 — 2",
(b) If numberis negative the two basic solutions are:; = 7 — 2™ andz, = 7 + 2,
[I. Once the basic solutions are fouralery solution: of (2.4.13) is of the form:

x =z, + 2nm, n integer, or
x = xy + 2nm, n integer.

CLARIFICATIONS. As was the case with the sine equations, the fact that thel™leguation
has alway$wo basic solution$ollows from the “Four-Point Game.

For the “hard” cosine equation, the two possibilities dgsad above are illustrated in the two
figures below.

number [
3
< . T 2 L2
< } y ; ; >
I s i)
2\—/

Figure 2.4.7
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The figure above depicts ca&e), when the right-hand side of (2.4.13) is positive. One of the
two basic solutions lies ifi0, Z] — quadrant I; the other one lies jAF, 27r] — quadrant IV.

A

A
=
=
)%
[\v]
oY
x
3
v

E T T T T >
2
number T

Figure 2.4.8

The figure above depicts cadg, when the right-hand side of (2.4.13) is negative. One of the
two basic solutions lies i, 7| — quadrant II; the other one lies {rr, 2%] — quadrant III.

Example 2.4.4. Suppose we want to solve the equation

2
cosz — V2. (2.4.15)
The associated reference angle equation is
f V2 f o us
cos(z"®) = 5 2"in [0, 5]

which clearly (based on the “familiar” values of sine for seangles), has the solutiaff’ = —.
Follows the method outlined above the two steps go as follows

I. Since the original (given) equation has positive rigatitl side, the two basic solutions of
(2.4.15) are

[I. Using the above basic solutiora] solutionsof (2.4.15) are:

T = % + 2nm, n integet

xr = Zﬁ + 2nm, n integer

Example 2.4.5. Suppose we want to solve the equation

COSX = —

(2.4.16)
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The associated reference angle equation is
cos(z"") = 1 2"in [0 z}
2’ T2
which clearly (based on the “familiar” values of sine for seangles), has the solutioff’ = %

Follows the method outlined above the two steps go as follows
I. Since the original (given) equation has negative rigiadhside, the two basic solutions of

(2.4.16) are
rlzw—xref:W—EZQ—ﬁ'
' 3 3’
L ref: 124_71—

II. Using the above basic solutiora] solutionsof (2.4.16) are:

2m .

T = 5 + 2nm, n Integet
47 .

xr = 5 + 2nm, n Integer

@ The above technique for solving elementary cosine equaiorery inefficient. We will
revisit it in Section 2.6.

The Graphs of the Tangent and Cotangent Functions
For the tangent function, which has periodour preferred choice for tHendamental interval
is (— T E). The graph of the tangent, together with the fundamentainmat of our choice

)

(shown in green) and the “master tile” (shown in purple),apidted in the figure below.

N
N
B
N
N

v

Figure 2.4.9
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Features of the Tangent Function

(i) Domain= all real numbers,except for odd multiples og Thug the graph has
vertical asymptotes:

x = g + nm, ninteger

(i) Range= all real numbers
(i) y-intercept= 0
(iv) z-intercepts= nm, n integer
(v) local maximum value(s¥ none
(vi) local minimum value(s¥ none
(vii) increasingon all intervals of the forn{ — g + nm,

(viii) decreasingonno interval
(ix) even/oddtangent function i®dd

(x) period= r; preferred fundamental interval — g, g)

T4 ), ninteger
— 4+ nmw),n
9 g

CLARIFICATIONS. Most of these features can baced back in the “master tile,” which is the

piece of the graph over the fundamental mter(/al 2) Sincetanz = 0 , it follows that
OSZL’

e thezeros (-intercepts) of tangerdre the same as theeros (-intercepts) of sing
¢ thevertical asymptotes for of tangeate at the same points as tlaeros (-intercepts) of
cosine

The method for solving thelementary tangent equatignshich are those of the form
tan x = number (2.4.17)

is similar to the one for sine or cosine equations, but isiBagmtly simplified. We start, of course,
with theassociated reference angle equation

tan(z'®") = \numbef, 2" in [O, g), (2.4.18)

and once we solve (2.4.18), the method goes as follows.

The Tangent Equations

Assumer™ is the unique solution of the associated reference anglatiequ2.4.18).
I. The original equation(2.4.17) will always havexactly one basic solutiorDepending
on thesignof numbey the unique basic solution is computed as follows.
(a) If numberis positive the basic solution isz, = 2.
(b) If numberis negative the basic solution isz, = — 2",

9 An odd multiple ofg is a number of the forni2n + 1)% = g + nm.
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[I. Once the basic solution is foundyery solutiorz of (2.4.17) is of the form:

x = x9 + nm,ninteger

CLARIFICATIONS. The fact that the tangent equation has alwawyty one basic solutiofol-
lows from the formula for negatives, and the“Four-Point @afsee Section 2.2, especially Figure

2.2.5), by which we know that, given aayin |0, g) the only other rotation angle if— g, g)
that hasy as its reference angle isa.
Example 2.4.6. Suppose we want to solve the equation

1
tanr = ———. 2.4.19
VG (2:4.19)
The associated reference angle equation is
1 T
tan(z™®) = —, 2"™in [0, ).
(@) = 7 0.5)

which clearly (based on the “familiar” values of tangentdoute angles), has the solutioffl = %

Follows the method outlined above the two steps go as follows
I. Since the original (given) equation has negative rigintidhside, the basic solution of (2.4.19)
is

™
To= — xref ——

6
II. Using the above basic solutioall solutionsof (2.4.19) are:

T .
T = 5 + nm, n Integer

@ The above technique for solving elementary tangent equsatall be improved in Section
2.6.

As for the graph of the cotangent function, we are going toausechnique similar to the one
that allowed us to transform the graph of sine into the graptosine. However, transforming
tangent into cotangent, in a way that allows us to keep it EBrapthe graph level, requires two
steps, because, using the formulas for negative complameatcan write

s
cot x = —tan (x — 5),

which means that, when we define the auxiliary function) = tan (:c — g) the following state-

ments hold true. -
1. The graph off is obtained from the graph of tangent byignht translation by§.

2. The graph ofot z = — f(x) is obtained from the graph gfby flipping about the:-axis
Combining these two observations, we see thatgraph of cotangent is obtained from the graph

of tangent by pushing first to threght by g thenflipping about ther-axis For this reason, the
cotangent function has its graph as depicted in the figuebel
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3w _x x i \3r 5
P 2 2 2 1 .
- —27 - E s 2 3r
y
Figure 2.4.10

Our preferred choice for thiendamental intervak now (0, 7). Figure 2.4.10 above shows the
graph of the cotangent, together with the fundamentalvatef our choice (shown in green) and
the “master tile” (shown in purple).

Features of the Cotangent Function

() Domain= all real numbers,except for integer multiples of. Thus the graph has
vertical asymptotes:

x = nm, ninteger

(i) Range= all real numbers
(iii) y-intercept= none
(iv) z-intercepts= Ty nm, n integer
(v) local maximum value(sy none
(vi) local minimum value(s} none
(vii) increasingonno interval
(viii) decreasingon all intervals of the forminz, (n + 1)), n integer
(ix) even/oddtangent function i®dd
(x) period= r; preferred fundamental intervgl0, 7)

CLARIFICATIONS. The fundamental intervdD, 7) for cotangent is obtained by pushing the
COS T

interval ( — z, z) — the fundamental interval for tangent — to the rightgbySincecotx = —

) sinz’
it follows that
e thezeros (-intercepts) of cotangerare the same as theeros (-intercepts) of cosine
¢ thevertical asymptotes for of cotangeare at the same points as theros {-intercepts) of
sine
Concerning theelementary cotangent equations

cot x = number (2.4.20)
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except for the caseumber= 0, which corresponds to theintercepts, all other cases reduce to the
tangent equation
1

tany = ——
number

so no additional analysis is needed. In either case, thergleswution of (2.4.20) will always be
of the form

xr =1x9 + nm,ninteger

The Graphs of the Secant and Cosecant Functions

As the graphs of secant and cosecant are quite complicdtey,are seldom used. These
graphs, depicted in Figure 2.4.11 and Figure 2.4.12 are ioolyded here for the sake of com-
pleteness.

For the secant function, which has period, our preferred choice for thieindamental “in-

. 3 . . :
terval” is ( — z, —W) with ~ removed One way to describe such sets is to call theimctured

intervals The graph of the secant, with the fundamental punctureahiat of our choice (shown
in green) and the “master tile” (shown in purple), is depdatethe figure 2.4.11 below.

1 1 1 ‘

U k
L —2m I ;
R ' 3 ' B

_ 5w _3m 5l

A

v

B

2 2
; .

valy

v

Figure 2.4.11

Features of the Secant Function

(i) Domain= all real numbersgexcept for odd multiples r-gf Thus the graph hasertical
asymptotes:

m .
z =g +omn integer

(i) Range= (—oo,—1]U[1,00), thatis, real numbers, eithet —1, or > 1
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(i) y-intercept=1

(iv) z-intercepts= none

(v) local maximum value(s¥ —1, atz = 7 + 2nm, n integer
(vi) local minimum value(s¥ 1, atx = 2nm, n integer

(vii) increasingon all intervals of the forn{2mr, g + 2n7r), n integer and on all intervals
of the form(g + 2n, 7 + 2n7], ninteger
: : & :
(viii) decreasingon on all intervals of the fornﬁﬂ +2nm, g + 2n7r), n integer and on all

intervals of the form — g + 2nm, 2n7 ], ninteger
(ix) even/oddsecant function igven

: 5
(x) period= 27; preferred fundamentaluncturedntervat ( — g, g) U (g, g)
: 1 . .
CLARIFICATIONS. Sincesecx = ——, it follows that: the vertical asymptotes for of secant

. .COST )
are at the same points as theros (-intercepts) of cosine

It is not necessary to discuss the elementary secant egsabecause (as was the case with

cotangent), using reciprocals, they can be reduced toeesjunations.

As for the graph and features of the cosecant function, weagam use graph transformations
that allow us to relate cosecant to secant. Indeed, usingdbative complement formulas, we
know that

™
sec r = CSC (LE‘ — 5)

What this means is thahe graph of cosecant is obtained from the graph of secantishipg it
to theright by g Our preferred choice for theindamentapuncturedinterval for cosecant will

therefore be0, 27), with 7 removed The graph of the cosecant, with the fundamental punctured
interval of our choice (shown in green) and the “master tii#fown in purple), is depicted in the
figure below.

|
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Figure 2.4.12
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Features of the Cosecant Function

(i) Domain= all real numbers.except for multiples of. Thus the graph hasertical
asymptotes:

x = nm, ninteger

(i) Range= (—oo,—1]U[1,00), thatis, real numbers, eithet —1, or > 1
(i) y-intercept= none

(iv) x-intercepts= none

(v) local maximum value(sy —1, atz = —g + 2nm, n integer

(vi) local minimum value(s}- 1, atz = g + 2nm, n integer
(vii) increasing:on all intervals of the forn{g + 2nm, 7 + 2nm), n integer and on all
intervals of the forn‘(w + 2nm, %ﬁ 4 Qnﬂ , ninteger
(viii) decreasingon on all intervals of the forn — g + 2nm, 2n7), n integer and on all

intervals of the form(2nr, Ty 2nr], ninteger

(ix) even/oddcosecant function isdd
(X) period= 2; preferred fundamentaluncturedntervat (0, 7) U (r, 27)

. 1 . .
CLARIFICATIONS. Sincecsc x = ——, it follows that:thevertical asymptotes for of cosecant
. sin & )
are at the same points as theros (-intercepts) of sine
Exercises

In Exercises 1-9 you are asked to list all features (PeriwdnEDdd/Neither, Domain, Range,
Intercepts, Maximum and Minimum Values and where they aeeradd, as well as Intervals where
the function is Increasing/Decreasing) for the given fiorct and then to sketch the graph.

1. f(z) =1+sinz
2. f(r)=1—sinz

1
3. f(z) = —3 +sinz

4. f(x) = —sinx
5 f(x) =3+sinx

6. f(x) =1+ cosx
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9.
In

f(z) =5+ cosz
Exercises 10-14 you are asked to list all features (Dojmaange, Intercepts, Vertical

Asymptotes, Intervals where the function is increasingrelasing, and Periodicity) for the given
function , and then to sketch the graph.

10.

11.

12.

13.

14.

f(z) =1+tanx
f(x)=1—tanx

f(x) = tan (z + %)

f(x) = 1—tan(x+?%r)

f(r) =14cotx

In Exercises 15-27 you are asked to solve a trigonometriateaqy either by finding all solu-

tions,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

or only those in a specified interval.

. ) 2
Findall solutionsof: sinx = g Use exact values.

Findall solutionsof: sinz = — Use exact values.
Findall solutionsof: sinz = —2. Use exact values.

Given the equatiosinx = —0.2, find only the solutions that are in the interyalr, 57].
Round to nearest01.

, : 1 . : . :
Given the equatiosin z = —g find only the solutions that are in the interyal3r, 37].

Use exact values.

. ) 2
Findall solutionsof: cosz = —g. Use exact values.

: : 3 . : : :
Given the equatiotbs v = g find only the solutions that are in the interyai, 97]. Use
exact values.

, : 3 . , : :
Given the equatiotos x = —g, find only the solutions that are in the interyalr, 47].
Use exact values.

Findall solutionsof: cos z = —3. Use exact values.

Given the equationos z = 0.7, find only the solutions that are in the interyal2r, 47].
Round to nearest01.

Findall solutionsof: tan z = —+/3. Use exact values.
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26. Given the equatiotan x = —1, find only the solutions that are in the interVailr, 67|. Use
exact values.

27. Giventhe equatiotan x = —7, find only the solutions that are in the interyal 67]. Round
to neares0.01.

2.5 General Sinusoidal Functions and Their Graphs

In this section we examine an important type of periodic fioms, which based on what we
learned so far, can be easily studied and graphed.

Shrinking/Stretching Graphs

Besides graph transformations that invosrefts we also have a good idea about how graphs
change when wecale the variablesin vector coordinates, the transformations we are usiag ar

those given by
([ )-1w]-10e] 7]
Y qy 0 ¢ Y
wherep > 0 andq > 0 are two (fixed) real numbers, which we call theandy-stretch factors
Such transformations are callstietch transformations.
If we think the plane as a big sheet of rubber pinned at theirgriguch a transformation

stretches by a factor gf in the horizontal direction, and by a factor gfin the vertical direc-
tion. For example, if we we perform a stretch transformation wgittetch factory = 1.5 and

q = 0.8, then the unit circle will be transformed into a “footbaliaged” curve, which is what we
call anellipse (More on these in Chapter 5.)

by
T~

4R I
L/ ]

Figure 2.5.1

Of course, a “true stretch” take place when the factor istgréhanl. If a factor is less thaf,
a shrinkage will take place. For example, in the case iléistt in Figure 2.5.1 the transformation
3. streches in the horizontal direction and shrinks in theie@lrtirection.

When graphs of functions are involved, the following eadg applies.
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Graph Scaling Rule

Given two functiong’ and ¢, which are linked by:
f(z) = ag(bx),
the graph off is obtained from the graph afby applying a stretch transformation with

1
(A) x-stretch factomp = 5 and
(B) y-stretch factory = a.

The Standard Sine-Wave Functions

Of special interest to us are teandard sine-wave functiongwhich are those of the form
o(x) = asin(bz); a, b positive (2.5.1)

The number: is called theamplitude of . The numbeb is called therequency of o. Using the
Graph Scaling Rule, such functions have their graphs |lgpkery much like the graph of sine,
except that they are stretched in both directions by the tvedch factors described imf and @)
above. In particular, it follows that is periodic, with

2T
Period= —.
! b

The functionss behave very much like the sine function, except that theituiees are slightly
modified to take the stretchings into account.

Features of Standard Sine-Wave Functions

If the functiono is given by (2.5.1), then it has the following features.
(i) Domain ofs = all real numbers
(i) Range or = [—a, a]
(i) y-intercept= 0
q . nim .
(iv) z-intercepts= —, n integer

b
: ) .
v) absolute maximum value a, atz = T + E, n integer
2b b
: - ) .
(vi) absolute minimum value: —a, atz = —2% + % n integer

in . . 2 2 .

(vii) increasingon all intervals of the forn{ — 2119 + Zm, Zib + Tbm], n integer
. . 2 3 2 .

(viii) decreasingon all intervals of the forn{% 42T 0T ﬂ} , ninteger

. . . b 2 b
(ix) even/oddthe functions is odd

(X) period= 2%; preferred fundamental interva]o, 2%)

Example 2.5.1. Consider the function(z) = 3 sin 2z.
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ANAADNALD L
RVATATATATATATAY

Figure 2.5.2

When compared to the graph of the usual sine function (shavwgnay), the graph of is shrunk
horizontally in half thenstretched vertically by a factor ¢f. The functions is periodic with

period= %ﬁ = m, S0 when we graph it, the “master tile” will be over the fundantal interval:
0, 7).
Shifted Sine-Wave Functions

Our knowledge of standard sine-wave can also be appliecetoghiftedversions, which have
the form

f(z) = asin (b(z — ¢)) = o(z — ¢), (2.5.2)

whereo is a standard sine-wave function of the form (2.5.1), anslsome other (fixed) number,
which is called thghase shift of f. The graph of such a function is obtained from tjneph ofo,
by applying a horizontal shift:

e if ¢ is positive the shift is towards thaght (by ¢ units);

e if ¢ is negative the shift is towards theght (by —¢ units).

Of course, the functions we are dealing with here are prigcikese that can be presented in
the form:

f(z) = asin(bz + ¢); a, b positive (2.5.3)
Features of Shifted Standard Sine-Wave Functions
If a function f is presented as
f(z) = asin(bz + c), (2.5.4)
with « andb positive then it can also be presented ashifted standard sine-wave equatior
(2.5.2), with phase shift:
(@
o= —3 (2.5.5)
Additionally, the function/ has:
(i) Domain of f = all real numbers
(i) Range off = [—a,a
(iif) y-intercept=sinc
q . nim .
(iv) x-intercepts= ¢ + —, n integer
b
. T 2nm
(v) absolute maximum value a, atx = ¢ + % + — " integer
: . T 2nm
(vi) absolute minimum value: —a, atz = ¢ — % + — integer
o . : 2 2 .
(vii) increasingon all intervals of the forn{qﬁ — % + %, o+ % + %], n integer
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(viii) decreasingon all intervals of the formj¢ -+ % + MTW, o+ 2—7; + QHTW} , n integer
27

(i) period= - preferred fundamental intervalg, ¢ + period) = [¢, ¢ + 2%)

Example 2.5.2.Consider the functiorf(z) = 3 sin (2x+g).

Theamplitudeof f is: 3. Theperiodof f is: 277 = 7, and the phase shift will be

T
__ 3 __7
¢ - 2 67
so the fundamental interval will have
T
start=¢ = ——;
0=—5;
end= ¢ + Period= —% + 7= %T

The graph off is then obtained from the graph of the standard sine-wawifums () = 3 sin 2x
iy . ™
— same as the one from Example 2.5.1 -shifting it to the left by—g.

AANANAND S
IAATATRTLVATATRY

Figure 2.5.3

As it turns out, many functions can be re-written as shiftaddard sine-wave functions. Basi-
cally, all functions of the forny (z) = msin(nx + p) or f(z) = mcos(nz + p), can be re-written
as in (2.5.3), using one of the formulas for negatives, té-{j@omplement formulas, or the add
7 formulas.

Example 2.5.3.Consider the functiorf(x) = —3 cos 2z.

As it turns out, using the formulas for anti-complementsat ik, cos a = sin (a+g), we can
rewrite

f(z) = —3cos2x = —3sin (2x+g).

Since adding/subtracting changes signs in then function, that issin(a+r) = sin(a—7n) =
—sin a,, we can re-write our function as:

f(x) = —3sin (2:5 + g) = 3sin (23: + g—w) — 3sin (Qxfg).

So when we matcli with ashifted standard sine-wave functiome get:
e amplitude= 3;

. 2
e period= ; =,
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e phase shift:

s
_ 2 _T
¢ - 2 47
o fundamental interval with
start= ¢ = .
= 0=
) 5)
start= ¢ + Period= g +7= Zﬂ

The graph off is then obtained from the graph of the standard sine-wawifums () = 3 sin 2x
ieyt . . T
— same as the one from Example 2.5.1 -shifting it to the right byz.

ANANANAANTS
IRVAVAVATATRTATAY

Figure 2.5.4

Finding the Equations of Sinusoidal Graphs
The problem we are concerned with here is the followifgven agraph (known to be the

graph of a shifted sine-wave function), find éguation The preferred form of the equation we
seek is:

y = asin(bx + ¢),
with botha andb positive so in effect the right-hand side isshifted standard sine-wave function
Of course, what we are doing is nothing else but tracing bheksteps used in graphing such
functions, which means that we use the following three-stefhod.

I. Find afundamental intervalithat is, an interval on the-axis that “is responsible” for
complete sine-way®nce such and interval is found, with g&rtandend we set:
e phase shiftp = start;
e period= end— start, or equivalentlyperiod= length of the fundamental interval

2
ariod andc = —¢-b.

Il Seta = amplitude(by identifying the maximum/minimuprcoordinates on the graph)

II. Compute the coefficients:=

Example 2.5.4. Consider the graph shown in the picture below, in which ak tharks are
spaced unit appart.

AN A
VARVAAVARY

Figure 2.5.5
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To find the equation that represents this graph, we followttihee steps outlined above.

I. One complete sine-wave (shown in purple) sits over therual from—1 to 3, so one

choicé? our fundamental interval is-1, 3). Based on this choice, our function will have
phase shift) = —1, andperiod= 4.
II. Using the preceding identifications, we have

_ 2r 2 7
~ period 4 2’

m m
e —bb=—(—1) -2

lll. As the y-coordinate of the highest points of the graph,isve can set. = amplitude= 2.
With all these calculations, we now conclude that the grapimfFigure 2.5.5 is simply given by
the equation

Y= 2Sin(gl’—|— g)

Exercisesn Exercises 1-9 you are asked toalbof the following:
(a) If necessary, rewrite the given function in the fogftw) = asin(bz + ¢) with « andb

positive

(b) Find the amplitude, period and phase shift.
(c) Sketch the graph and highlight the “master tile.”

1.

2.

10.

. f(x) = 2sin (32 — 2)

. f(z) = —2sin 27z + z)

. f(z) = —3cos (4x — z)

f(x) = 4sin3x
flw) = —4sin (20 + 7)
3

2

. f(x) = —4sin (g — 3x)

. f(x) = 5sin (§ — 10z)
. f(z) = —4cosdx

. f(z) = 2cos (7 + g)

b}

f(x) = —2cos (2z + g)

10 picking a fundamental interval is a matter of choice; ottadicdvchoices are for example 5, —1), or [3, 7).
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11. f(x) = —6cos (g — 2;)

NOTE: A good supply of problems in which you are asked to firedgfquation, given the graph
(similar to Example 2.5.4), is provided in tike STATE ONLINE HOMEWORK SYSTEM.

2.6 The Inverse Trigonometric Functions

In this section we introduce certain functions that ultietatvill allow us to solve all elemen-
tary trigonometric equations, of the form

function(z) = number (2.6.1)

wherefunctionis one ofsin, cos, tan. The main problem with equations of the form (2.6.1) is
that they havenany(in fact infinitely many solutions so the main idea in defining our inverse
functions will be to build a “recipe” for picking upne particular solution

Example 2.6.1. We have all become familiar with such a construction in Algelvhen we
learned about thequare root operationThe way we constructed the square root was by defining
v/numberto be the solution of the equatién = number which is> 0. For example, when we
want to compute/81, we look at the equatior? = 81, which hastwo solutions+9, and we pick
the one that is not negative, thatisand this particular solution is what we defin&1 to be.

Inverse Functions

The best way to understand Example 2.6.1, in a way that iScatbé in Trigonometry, is to
usefunctionterminology.

Given a function/, and some sdb contained in thelomain off, we say thaf is one-to-one
on D, if:
(x) wheneverz; and z, are two distinct elements inD (that is, z1#x,), it follows that

f(z1) # f(x2).

Example 2.6.2. If we consider the functiorf(z) = 2? (with domain consisting of all real
numbers), therf is not 1-1 on its entire domain, because for instarde‘1, but f(—1) = f(1).
One way to “fix” this problem is then to consider the get= [0, o). When we restrict to this set,
the desired propertx) will hold, so we can safely declare thais one-to-one ono, co).

The Restricted Inverse Function Construction

Given a functionf, whichis one-to-one orD, we can define a functionas follows:

(A) We let thedomain ofg to bethe set of all possible values 6fz), asx runs throughD.

(B) For any numberin the domain of ¢ (as defined above), we define the quantity
g(numbej = ? to be theunique elemenit in D that satisfies

f(?) = number (2.6.2)
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The functiong defined this way, is called thestricted inverse (function) of f relative to
D. In addition to @) and @) above, this function also has:

(c) range ofg = D.

In the case wherf is one-to-one, on its entire domaithe above function is called the
inverse (function) of £, and is denoted by . In this instance,

e domain off~! = range off;

e range off~! = domain off.

Example 2.6.3. If we consider arexponential functionthat is, one of the fornf(z) = o,
with ¢ # 1 some positive constant, thehis one-to-one on its entire domain (the set of all real
numbers). Thereforg¢ has an inverse function associated with it, which is notlalsg but the
logarithimc function f~'(z) = log,z, x > 0. (The domain off ~! is the range of the exponential,
which we know to be equal t@®, 0c).)

Example 2.6.4. If we consider the functiorf(z) = z? from Example 2.6.2, then its restricted
inverse relative t@0, co) is precisely the square root functigfiz) = \/x, =z > 0.

CLARIFICATION. Whenever restricted inverses of functions are constdytiey immediately
yield an important pair of formulas, as follows.

Inversion Identities

If the functionf is one-to-one onD and g is therestricted inverse off, relative to D,
then:

l. f(g(z)) = =, for everyz in thedomain ofy;

Il. g(f(z)) = =, for everyz in D.

The next issue we can considemisaphing(restricted) inverse functions. The most effective
way to handle this problem is to proceed as follows.

Graph Inversion

Suppose the functiori (whose graph is given) isne-to-one oD andg is therestricted

inverse off, relative toD. In order to graply, we follow these steps.

1. We plot/mark only the points on the graph jothat haver-coordinates inD. In other
words we only plot the points that satisfy

y=f(z), =zinD. (2.6.3)

(If D is the entire domain of, then (2.6.3) is the entire graph 6f)
2. The graph of; is obtained byreflecting the points plotted/marked in step 1 about the
diagonal liney = z. In effect, this new plot is given by

z= f(y), wyinD. (2.6.4)

Example 2.6.5. Consider the set-up from Example 2.6.4, wjthx) = z* and D = [0, c0)
(shown on ther-axis in green).
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A,

Figure 2.6.1

The entire graph of is shown in blue, while the plot obtained by step 1 is highiegh(drawn
thicker) in green. When we reflect (flip) this set about theydiel (shown dashed in purple), we
obtain exactly the graph of the restricted inverse function = /z, x > 0, which can also be
presented as:

z=1y> y=>0.

The Arcsine and Arccosine Functions

We wish now to apply the construction of a “reasonable” ret&d inverse for the sine function
f(x) = sinx. We first need to identify a sé?, on whichsineis one-to-one

Figure 2.6.2

Based what we see in the above picture, a suitable choicebfsset is:D = [— g, g} . After
all (see Section 2.4), we also know tlsateis increasing or{ — g, g} , and this clearly guarantees
one-to-one-ness. With this choice in mind, we can now defieddllowing function.

Thearcsinefunction, denoted byrcsin, is therestricted inverse of theinefunction, relative

to|— g, g] Thedomain ofarcsin is the interval 1, 1]. Therefore:

sin 7 = number
arcsin number= ? means:{ —1 < number<1 (2.6.5)

T . T
L7 =
2 2

Using what we learned about graphing (restricted) inversesgraph of arcsine is obtained
by reflecting about the diagonal the piece of the graph of &inetion (shown in Figure 2.6.2 in

green) corresponding to the intervat g, g]
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A

vl

(S

v

Figure 2.6.3

The above figure depicts the graph:ofsin (shown in thick red), together with its domain,

[—1,1] and its range — g, g}

Features of the Arcsine Function

(i) Domain= [—1,1].
an T T
@ Range- [~ 3]
(iif) y-intercept=0
(iv) z-intercept=0

(v) absolute maximum value g atr =1

(vi) absolute minimum value: —g, atr = —1
(vii) increasingon theentire domain—1, 1.
(viii) decreasingon no interval

(ix) even/oddthearcsin function isodd

(x) inversion formulas:

sin(arcsinz) =z, forall zin[—1,1]; (2.6.6)
T

resin (si = forallain | — -, —|. 2.6.7

arcsin(sin ) = a, Q@ [ 5 2} ( )

We can do calculations with values ofcsin, without even caring about what these values
really are! After all, in Algebra we freely manipulate numdéke v/2, v/3, etc. without needing
to approximate their values.

@ Read the example below very carefullif!contains several important steps needed for an
accurate calculation involving-csin.

Example 2.6.6. Suppose we want to find trexactvalue of

Cos (arcsin (—%)) .

: 1 .
For this type of a problem, we do not care of what the valuerofin (_5) really is. Instead,
we will denote it by some symbol, so using the meaning of agsas in (2.6.5), we can let for
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instance

1 :
arcsin (—g) = «,, meaning that: (2.6.8)

The above characterization determinesiniquely! Using this notation, our problem can be re-
stated as followsGivenc«, characterized by2.6.8) find cos a.

To solve our problem, as restated above, we need to get a hatidle onn, particularly to
identify thequadrant We do this bynarrowing down the interval For this purpose, we simply

notice that, since sits in the interval[ — g, g] , it can only be either
e in Quadrant IV, that is, in the interval— g, 0], or

e in Quadrant |, that is, in the intervab, g}
On the other hand, using (2.6.8), we know thiat« is negative which leaves us with only one
possibility: a sits in [ — g, 0], thus in Quadrant IV

We can now computes « using the Coordinate Method explained in Section 2.2. Alheed
is to represent as an angle in standard position, and then find one point teritsnal side. Using

the Coordinate Formulas, by which we know tkiat o« = g, we can try to look for a poinP with
T

y = 1 andr = 3, so using the formula = /22 + y2, we get (after taking squares):= 22 + 1,
thusz? = 8, which yieldsz = 4+/8. Of course, sincé is in quadrant IV, itsc-coordinate is> 0,
so we must have = /8, which finally gives:

. 1 T \/g
cos | arcsin (——) =cos o= — = —.
3 r 3

@The calculation done in the preceding Example will be impbupon soon! (See the topic
entitled “Identities for Inverse Trigonometric Functirelow.)

If we want do a construction similar to the one performed &ybwut for cosine instead of sine,
we need to identify a s€P, on whichcosineis one-to-one

NS
Figure 2.6.4

Based what we see in the above picture, a suitable choicebfsset is nowD = [0, 7]. After
all (see Section 2.4), we also know tltatsineis decreasing off0, =], and this clearly guarantees
one-to-one-ness. With this choice in mind, we can now defieddllowing function.
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The arccosinefunction, denoted byirccos, is therestricted inverse of theosinefunction,
relative to[0, 7|. Thedomain ofarccos is the interval—1, 1]. Therefore:

cos 7 = number
arccos number= ? means:{ —1 < number< 1 (2.6.9)

0<?<m

Using what we learned about graphing (restricted) invetbesgraph of arccosine is obtained
by reflecting about the diagonal the piece of the graph oheo&inction (shown in Figure 2.6.4 in
green) corresponding to the interyal .

-1 1

A,

Figure 2.6.5

The above figure depicts the graphaofcos (shown in thick red), together with its domain,
—1, 1] and its range€o, r|.

Features of the Arccosine Function

(i) Domain= [—1, 1].
(i) Range= [0, 7]
(i) y-intercept:g
(iv) z-intercept=1
(v) absolute maximum value r, atz = —1
(vi) absolute minimum value: 0, atz = 1
(vii) increasingon no interval.
(viii) decreasingon theentire domain—1, 1]
(ix) even/oddthearccos function isneither odd, nor even
(x) inversion formulas:

cos(arccosx) =z, forall zin[—1,1]; (2.6.10)
arccos(cos) = o, forall awin [0, 7). (2.6.11)

The arcsin and arccos functions go “hand in hand,” due to the fact that sine andreosire
related by the identity
cos o = sin (g — a).
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If we inspect carefully the definitions afcsin andarccos, then the above identity will give us the
following important formula.

Complement Formula for Arcsine and Arccosine

arcsin x + arccos x = g, forall z in [—1, 1]. (2.6.12)

From (2.6.12) one can easily derive the identities

m .
arccos T = 5 — arcsin z, (2.6.13)
, T
arcsing = 5 — arccos z, (2.6.14)

which hold for allz in [-1, 1].

In particular, using (2.6.13) we can see that the graphrafos is obtained from the graph of
arcsin by

e flipping about ther-axis (which will produce the graph g¢f(x) = — arcsin z), then

e shifting upward byg (which will produce the graph og + f(z) = arccos z).

. 1 1
Example 2.6.7.Suppose we are asked to find theactvalues ofircsin (—5) andarccos (—5).

. . . 1 ,
From the list of “familiar” values for sine, we remember tbﬁi’% =5 Using the formula for

negatives for sine, it follows that
. T 1
sin (—) = 3.
If we compare this calculation with the definition of arcsimes clearly see that we have a good
match, that i’ = —% does satisfy all conditions in (2.6.5). So it is safe to cadelthat:

. 1 s
arcsin (—5) = —6
As for arccos (—5), although we may try to do a similar thing for arccosine, g&sier if we use
(2.6.13) instead, which quickly gives us

N L T o omy mo om 3r m  dmlr
arccos(—§)—2 derlll( 2)— ( )_2+6_6+6_6 5

Example 2.6.8.When we are asked @pproximatecertain values ofircsin or arccos, we can
always use a calculator, where these functions are notlsegoait our “old friends’ and

cos™!|. For instance, using a calculator, we can approximate
arcsin(—0.6) ~ —0.643501109; arccos(—0.6) ~ 2.214297436. (2.6.15)

Of course, in order to get this result we need to set the atiouto work withradians What
happens whedegreeare used instead? The answer is very simple:
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. . . T T . T .
° mstea-d of p-roducmg an output |[n— 5 5]’ the calculator functlo will yield a
value in the interval—90, 90];

e instead of producing an output i, 7|, the calculator functio will yield a value in
the intervall0, 180].
For instance, the values (2.6.15) computed in degrees ollve:

arcsin(—0.6) ~ —36.86989765°;  arccos(—0.6) ~ 126.86989765°.

@ Some texts denotercsin by sin~*, andarccos by cos~!. Such notations are to @oided
as they are misleading in many ways. First of all, as “fullhdétions sine and cosine are not
one-to-one, so they to not have “full” function inversesc@wlly, the use of exponents has been
established as a shortcut for powers of trigonometric fonst (For instancesin® x is a shortcut
for (sinz)2.) The only reason we séei nt ‘ and‘ cos™?! ‘ on a calculator is space-saving!

The Arctangent Function

Suppose now we want to find a restricted inverse of the tarfgeation, for which we need to
identify a setD, on whichtangentis one-to-one

B

]
NIE

Figure 2.6.6
™ T
T 2 5)
After all (see Section 2.4), we also know thangentis increasing or( - -, —), and this clearly
guarantees one-to-one-ness. With this choice in mind, waoa define the following function.

Based what we see in the above picture, a suitable choicebfesset is nowD = (

Thearctangentfunction, denoted byrctan, is therestricted inverse of thiangentfunction,
. T T . o
relative to( =5 5). Thedomain ofarctan is theset of all real numbersTherefore:

tan 7 = number

arctan number= 7 means: (2.6.16)
_z <7< z
2 2

Using what we learned about graphing (restricted) invetbesgraph of arctangent is obtained
by reflecting about the diagonal the piece of the graph of@aanhfunction (shown in Figure 2.6.6

in green) corresponding to the interval- g, g)
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Figure 2.6.7

The above figure depicts the graphaoftan (shown in thick red) and its rang(e— g, g)

Features of the Arctangent Function

(i) Domain= aII7rTea71TI numbers

() Range- (- 5.3)

(i) y-intercept= 0

(iv) z-intercept= 0

(v) local maximum value= none

(vi) local minimum value= none

(vii) increasingon theentire domain
(viii) decreasingonno interval

(ix) even/oddthearctan function isodd

(x) inversion formulas:

tan(arctanx) =z, forall x; (2.6.17)
arctan(tana) = a, forall ain (— g g). (2.6.18)

Example 2.6.9.Suppose we are asked to find theactvalue ofarctan (—/3).
From the list of “familiar” values for sine, we remember tlﬂa]hg = /3. Using the formula
for negatives for tangent, it follows that
tan (—%) = —/3.
If we compare this calculation with the definition of arctany we clearly see that we have a good
match, that i’ = —g does satisfy all conditions in (2.6.16). So it is safe to dode that:
s
arctan (—\/5) = 3

As was the case withrcsin andarccos, values ofarctan can also bepproximatediusing the

calculator functio, with the calculator set tadians As was the case Wi, when
degrees are used, the output will be in the intefvel0, 90).

@ As previously explained, a notation liken ! instead ofarctan should beavoided

|dentities for Inverse Trigonometric Functions

Exactly as was the case with the usual trigonometric funstifor which we have quite a few
identities linking them (see Section 2.3), there are algersg¢identities that involvercsin, arccos,
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andarctan. The list of all possible identities is quite large, so welwitly limit ourselves to the
most important ones. (Other, but not all possible ones, aneethto the Exercise section.)

Among the many identities , six have already been identifiex/a, as the so-calleédversion
formulas (2.6.6), (2.6.7), (2.6.10), (2.6.11), (2.6.17), and (28. Two additional identities we
have already dsicussed are thosedmmplementy(2.6.13) and (2.6.14).

Another set of identities, which concernegativesis as follows.

Formulas for Negatives

arcsin(—z) = —arcsinz, for everyx in [—1, 1]; (2.6.19)
arccos(—z) = m — arccosz, foreveryzin [—1,1]; (2.6.20)
arctan(—z) = — arctanz, for every real number. (2.6.21)

CLARIFICATIONS. Formulas (2.6.19) and (2.6.21) simply say thatsin andarcsin areodd
As for the curious formula (2.6.20), it can be easily derifeam (2.6.19) and the complement
formulas (2.6.13), (2.6.14), because we can write

m . ™ . ™ ™
arccos(—x) = 5 — arcsm(—a:) = 5 + arcsin xr = 5 + 5 — arccos r = m — arccos x.

We conclude with three sets of identities, which expandrhernsion formulas (2.6.6), (2.6.10)
and (2.6.17). In a certain sense, these identities mirrosaltderived from the “Holy Grail of
Trigonometry.”

Trigonometric Functions of Inverses

Trigonometric Functions of arcsine For everyx in [—1, 1], we have:

sin (arcsin x) = 45 (2.6.22)
cos (arcsin x) =V1-— a2 (2.6.23)
T ifa A 41
k) I b
tan (arcsin x) =< V1—22 (2.6.24)
undefinedif z = +1;
V1 —a? i _
cot (arcsin x) = A Itz #0; (2.6.25)
undefinedif x = 0;
sec (arcsinz) = ¢ /1 — 22’ it 7 +1; (2.6.26)
undefinedif z = +1;
1 _
csc (arcsinz) =< 7’ Ve =0 (2.6.27)
undefinedif x = 0;
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Trigonometric Functions of arccosine For everyz in [—1, 1], we have:

sin (arccos x) =V1-— a2 (2.6.28)
oS (arccos x) = i (2.6.29)
V1—a? i _
tan (arccos x) = P itz #0; (2.6.30)
undefinedif x = 0;
i
, if +1;
cot (arccos x) =4q Vv1—2a? r7 (2.6.31)
undefinedif x = +1;
1. _
sec (arccosz) =14 g’ o 2= (2.6.32)
undefinedif x = 0;
1 _
csc (arccosz) = ¢ /1— 22 e #£1; (2.6.33)
undefinedif z = +1;
Trigonometric Functions of arctangent. For every real number, we have
x
sin (arctanz) = : 2.6.34
fexcton) = s e
1
cos (arctan z —_—; 2.6.35
loxctenz) = T2 S
tan (drctdn x) i (2.6.36)
1. _
cot (alctan x) =< g e 7= O (2.6.37)
undefinedif x = 0;
sec (arctanz) = V1 + 22; (2.6.38)
Vv1+ x2 i _
cse (arctan x) = fa70; (2.6.39)

undefinedif z = 0;

CLARIFICATIONS. To obtain (2.6.23) and the rest of the formulas:forsin, we work exactly

as in Example 2.6.6. We setcsinz = «, so thaty is in [ — g, g] andsin o = z, so that what
we need to find isos o. We know thatos o = ++/1 — sin? « = +v/1 — 22. However, sincer is
either in Quadrant | or in Quadrant IV, we also know that« > 0, so regardless what is, the
correct value igos o = ++/1 — 22, With the value otos « computed, the value afin o, and of

the others follow immediately.

The identity (2.6.38) and the rest of the formulas fortan are obtained similarly, by setting
up arctan z = «, which is again in Quandrant I or IV, on whiehc o > 0, and so we getec o« =
+v1 +tan? o = ++/1 + 22, from which everything else follows.
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To get the identity (2.6.28) and the rest of the formulas&foros we set uparccosz = a,
which is now in[0, 7| (Quadrant | or 1l), for whictsin « > 0. As above, this will givecos o =

+1/1 —sin® a = ++/1 — 22, from which everything else follows.

Example 2.6.10. Suppose we want to compute teactvalues all six trigopnometric functions
of arctan(—2). We can use identities (2.6.34) and (2.6.36) with —2, which immediately yield:

sin (arctan(—2)) = e
h VIF(=2?2 V5
cos (arctan(—2)) = b L
VIF(=2? 5
Since we also knowan (arctan(—Q)) = —2, the other functions (secant, cosecant and cotangent)
are easily computed using reciprocals:
sec (arctan(—2)) = 1 = V/5;
cos (arctan(—2))
1 )
csc (arctan(—2)) = — = —i;
sin (arctan(—Q)) 2
1 1

ot (arctan(—Q)) B tan (arctan(—Z)) )

Exercises

In Exercises 1-12 you are asked to fandact valuesof several inverse trigonometric functions.
As you will see, all calculations relie on “familiar” values

1. arcsin (?)

S

2. arcsin ( —

3. arcsin (?)

S

4. arcsin ( —

~ N

5. arcsin ( —4

6. arcsin (sin 8%)
7. arccos ( — ﬁ)

2
8. arccos ( - 1)
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9. arccos (3)
10. arccos (cos 5?7?)

11. arctan (1)

12. arctan ( - 1)

In Exercises 13—-17 you are asked to comparact valuesof several inverse trigonometric
functions. Use either Example 2.6.6 or Example 2.6.10 asdetine

12

13. cos <arcsin (1—3))

14. sin (arccos ( — %))

)

16. cot ( — arcsin (%))

15. tan (arcsin ( —

ot W

17. cos <arctan (10))

18*. Find the exact value afrccos (cos 10)

19*. Find the exact value efrctan ( tan(—15))

2.7 Trigonometric Equations

In this section we discugsgonometric equationswvhich are those types of equations that are
presented as
(Left) Expression= (Right) Expression

where each side is areXpressiohthat containstrigonometric functions involving an unknown
number When we deal with such equalities, the first question we needk ourselves is thiss
the given equality amdentity? If the answer is “yes,” then the equation is very easy to sdha
instance, if we look at the “equation”

sin? 2 + cos? z = 1,

this is in fact an identity, so its solutions ak real numbers

The problem becomes interesting, when the given equalitgigan identity. So what we call
“trigonometric equatiorishere are nothing else but what we callddise identities in Section
2.3.
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Before we deal with complicated equations, we will revisgé¢lementargrigonometric equa-
tions, for which we will improve the solving method using timeerse trigonometric functions
which we introduced in Section 2.6.

The Elementary Tangent Equation
The equation we are interested in here is of the form

tan x = number (2.7.1)

wherez (or any other letter) is thenknown andnumberis some constant.
In Section 2.4 we learned that, typically, equations lik& (B) have all solutions presented as
one list of numbergpresented in the form

_ xbasm

xr = + nm, ninteger (2.7.2)

where 2°25¢ stands for what we called theasic solution which is thesolution in the interval
(- g, z). In Section 2.4 we also learned that the basic solution walseoform °25'¢ = £ "¢,
where the sign matches tegnof number

Instead of “playing this sign game” (as we did in Section 8ek for instance, Example 2.4.6),
we can streamline our old method by observing that, no mattat signnumberhas, the basic
solution 3¢ sits in therange ofarctan, so it must be equal terctan(numbej. This way, our

new approach to solving (2.7.1) is not to worry about signs simply to say the following.
For any realnumbey the solutions of the equation

tan z = number
are given by:

x = arctan(number) + nm, n integer.

The Elementary Sine and Cosine Equations
The equations we are interested in here are those of one frthe

sin x = number (2.7.3)
cos x = number (2.7.4)

In Section 2.4 we learned that, typically, equations like’ (2) or (2.7.4) have all solutions
presented alssts of numberspresented in the form

x =24 onr,  ninteger (2.7.5)

wherez25¢ stands for what we called thmasic solution(s)which were thoseolutions in the in-
terval [0, 27r). In Section 2.4 we also learned that the basic solutionsiaea ¢y certain formulas,
which depended on thegn of numberand this complicated things a little bit.

@ What we are about to do will be to “get rid of our headaches’teoning the sign ofiumber
and instead of writing our solutions as in (2.7.5), we wii to write them as

x = 2%+ 2nmw, ninteger (2.7.6)
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wherez®2Ywill be some other types of solutions, which will be easiefind thanz2¢, especially
when we usercsin andarccos.

As it turns out, the cause of all our “headaches” related ®cbsolutions is not the sign of
number but theintervalwhere the basic solutions sit! If instead|0f27) we choose another half-
open interval, which still has lengttr, our task might be simplified. Those improved intervals, in
which the elementary equations can be solved easier, walf tvee form|c, o + 27) or (o, o + 27|
(to be identified shortly), and will be calleégasy” intervals. Whatever our “easy” interval will
be, the number(s) denoted b§<Y will be the solution(s) of our equation in the “easy” interval
As for our choice for such intervals, we will follow a very gpte rule:

If functiondesignates either one sifh or cos, an “easy” interval is a half-open interval of
length27, such thatunctionhas itsminimum value athe endpoints of the interval

In particular, the graph dlinctionover an “easy” interval looks like:

X /\ o
\/ atm \0/

Figure 2.7.1

As seen in Figure 2.7.1, the midpoint of the “easy” intergahia+7, and at this poinfunction
(which is eitherin or cos) attains itsmaximum valuéunction(a+n) = 1.

CLARIFICATIONS. Before we specializ&inctionto eithersin or cos, we can say a few things
that work forbothof them. Of course, when we want to find the “easy” solutiorthefelementary

equation
function(z) = number (2.7.7)

we need to find the-coordinate(s) of the point(s) where the horizontal line numberintersects
the graph, over the “easy” interval.

r=o+7m x:;pzasy r=a+27

Figure 2.7.2

=« x:x?aSy

By inspecting Figure 2.7.2 above, we see that:
e If number> 1, ornumber< —1, then the equation (2.7.7) has “easy” solutions
e If number= —1, then the equation (2.7.7) hasactly one “easy” solutiopwhich isone of
endpoints of the “easy” intervalz®®Y= «, a+2r. (This depends on where we choose the
“easy” interval to be closed.)
e If number= 1, then the equation (2.7.7) again feasactly one “easy” solutioypwhich isthe
midpoint of the “easy” interval 22 = a+r.
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e equation (2.7.7) hasxactly two “easy” solutionsz{**andz5**, which satisfy the equality

eas eas
23 4 58

2
where againv+7 is themidpoint of the “easy” interval

= a+m, (2.7.8)

When we specialize to tr@nefunction, our “easy” interval will be{ — g, ?ﬂ) (which hasg
as its midpoint), so in this case, the situation depictedguie 2.7.2 will become:

y= number

__T _.easy
T=—7 =

r=

Figure 2.7.3

NIE
8
|
8

The picture above (which features case when< number< 1) has the left half of the graph of
sineshown in green. As it turns out, this piece corresponds tarttezval [— g, g] which is
precisely theange ofarcsin. This means that one of the “easy” solutions is precisely

27 = arcsin(numbey.

As for the second “easy” solution, using the midpoint foren(2.7.8), which in our case reads

:L_eaSy_i_ :L_eaSy T
% = we immediately get ™ + 25* = 7, so:
r5Y = m—a5" = m—arcsin(numbey.

These findings can then be summarized as shown below.
“Easy” Solutions of the Elementary Sine Equation

: 3 : :
When choosmq — g, g) as the ‘easy” interval, the elementary equation

sin x = number

has the following “easy” solutions.
I. If number> 1, ornumber< —1, there areno “easy” solutions

II. If number= +1, then there igxactly one “easy” solutionz®@% = arcsin(numbejy.

lIl. If —1 <number< 1, then there areexactly two “easy” solutions: 5% =

arcsin(numbey andx5® = r—arcsin(number.

Example 2.7.1. Consider the elementary sine equation

) 1

SINxyr = ——
27

and let us find its “easy” solutions.
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: . . 1 .
Since (by the “familiar” values of sine) we knawcsin (5) = % using the formula for nega-

. 1 . .

tives forarcsin we also knowarcsin (—5) = —%. Using the above method, the “easy” solutions
. . 7

of our equation will now be$* = —% andz5™ = 7—( — %) =+ % = %

When we are interested ail solutions of an elementary sine equation, we are now going to
use formula (2.7.6), which in the case whemh < number< 1 will producetwo listsof numbers

x = arcsin(numbely+2nm, n integet (2.7.9)
r = m—arcsin(numbej+2nm, n integer (2.7.10)

As it turns out, the above two lists can be considered evendrcase whenumber= +1, but in
that case we will have duplication meaning that the two lists will produce the same numbers.
In any case, it is worth point out that each list produces rensibf the form

“+arcsin(numbey + multiple of 7.

Using this observation the lists (2.7.9) and (2.7.10) cafaah becombined to produce aingle
list of numbers, as shown below.

The “Clean” Solution of the Elementary Sine Equation

The elementary sine equation
sin z = number

has all its solutions given as follows.
I. If number> 1, ornumber< —1, there areno solutions

Il. If —1 <number< 1, then all solutions are of the form:

x = (—1)*arcsin(numbey + k, k integer (2.7.11)

CLARIFICATIONS. The “clean” list given in (2.7.11) can be split into two he$y each one
corresponding to one of the two lists (2.7.9) and (2.7.183€dl on thearity of k.
(a) If k is even thus of the formk = 2n, for some integer, then(—1)* = +1, so the list
(2.7.11) produces = arcsin(numbei+2nm, a number in (2.7.9).
(b) If kisodd thus of the formi = 2n + 1, for some integen, then(—1)* = —1, so the list
(2.7.11) produces = —arcsin(numbey+7 + 2nm, a number in (2.7.10).
Another nice feature of the “clean” formula (2.7.11) is théists the solutions imncreasing order
(See Example 2.7.2 below.)
As pointed out earlier, in the case whemmber= +1, the two halves of (2.7.11) — obtained by
choosingk to be eitherevenor odd— will produce same numbers.
Sincearcsin(0) = 0, we see that in the case wheamber = 0, the “clean” list (2.7.11) will
produce
x = km, k integer

which are precisely the-interceptsof sine
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Example 2.7.2. Consider the same elementary sine equation

) 1

SINxy = ——

27

as in Example 2.7.1, and let us now find all of its solutions.

Using the “clean” formula (2.7.11), we can simply write:

0 (—1)kx

1 .
x = (—1)*arcsin (—5) + kr = (—l)k( — 6) + kr = + km, k Integer

(Notice that we simplified-(—1)" = (—1)(—1)% = (=1)*1))
We illustrate how the above formula works by plugging in salealues ofk:

k| -2 | -1 ] o | 1] 2] 3
7137r 757r T Tm | 117 | 197
. 6 | 61 61616 |6

Let us see now how the whole story above changes, when weassgeinstead of sine. A
good choice for our “easy” interval will be-, 7| (which has) as its midpoint), so in this case,
the situation depicted in Figure 2.7.2 will become:

' ‘easy
T=—T ZC:II

: . _eas '
z=0 T=, Y =7

Figure 2.7.4

The picture above (which features case when< number< 1) has the right half of the graph
of cosineshown in green. As it turns out, this piece corresponds tarttesval [0, 7], which is
precisely theange ofarccos. This means that one of the “easy” solutions is precisely

25 = arccos(numbey.

As for the other “easy” solution, using the midpoint formfa7.8), which in our case reads
easy easy
G

2

easy

= 0, we immediately get*> + 25 = 0, so:

_easy_

X easy
l/[/ 1 h—

—T5 —arccos(numbey.

These findings can then be summarized as shown below.



132 2.7. TRIGONOMETRIC EQUATIONS

“Easy” Solutions of the Elementary Cosine Equation

When choosing—, 7] as the ‘easy” interval, the elementary equation

cos x = number

has the following “easy” solutions.
I. If number> 1, ornumber< —1, there areno “easy” solutions

IIl. If number= +1, then there igxactly one “easy” solutionz®®Y= arccos(numbejy.

. If —1 <number< 1, then there areexactly two “easy” solutions: 25 =

—arccos(numbey andz5?> = arccos(numbery.

Example 2.7.3. Consider the elementary cosine equation

V2

cosT = ———,

2
and let us find its “easy” solutions.

: . . 2 .
Since (by the “familiar” values of sine) we knowrccos (g) = Z, using the formula for

4
: 2 3 :
negatives forrccos we also knowarccos (—g) =7 — % = Zﬂ Using the above method, the
: . . 3
“easy” solutions of our equation will now b&*” = —Zﬁ andz;™ = Iﬁ

When we are interested ail solutions of an elementary cosine equation, we are now going
use formula (2.7.6), which in the case whemh < number< 1 will producetwo listsof numbers

x = —arccos(numbej+2nm, n integet (2.7.12)
x = arccos(numbej+2nm, n integer (2.7.13)

As it turns out, the above two lists can be considered evendrcase whenumber= +1, but in
that case we will have duplication meaning that the two lists will produce the same numbers.

Of course, the lists (2.7.12) and (2.7.13) can be easilyradyce asingle listof numbers, as
shown below.

The “Clean” Solution of the Elementary Cosine Equation

The elementary cosine equation
cos x = number

has all its solutions given as follows.
I. If number> 1, ornumber< —1, there areno solutions

Il. If —1 <number< 1, then all solutions are of the form:

x = Farccos(numbey + 2nr, n integer (2.7.14)

CLARIFICATION. As pointed out earlier, in the case wheamber= +1, the two halves of
(2.7.14), corresponding to the or — sign, will produce the same numbers.
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Also, using the equalityircsin(0) = g we see that in the case wheamber= 0, the “clean”

list (2.7.11) will produce the numbers= ig + 2nm, which can be rewritten in one single list of

the form
™ .
r= §+k7r, k integer

which are precisely the-interceptsof cosine
Example 2.7.4.Consider the same elementary cosine equation

V2

cosr = ———,

2

as in Example 2.7.3, and let us now find all of its solutions.
Using the “clean” formula (2.7.14), we can simply write:

2 3 .
T = Zarccos (—\/77) + 2nmw = izﬁ + 2nm, n Integer

Substitution Methods

When dealing with more complicated equations, we often eynhle substitutiontechnique,
which allow us toreducean equation to a simpler one.

The Substitution Method

Suppose &omplicated) equation im (or any other letter that designates the unknown) is fo
be solved. We solve the given (complicated) equation byngetip asubstitutiorequation,
which involves a new variable (say, or any other symbol we want), which is of the form

(simple) expression im = y, (2.7.15)
so that the given equation becomes a
(simpler) equation iny, (2.7.16)

which we refer to as theeducedequation. We deem our substitutisnccessfullif both the
reduced equation (2.7.16) and the substitution equatiohl(®) aresasy to solvelf this is
the case, the given (complicated) equation can be solvedityieg on the following two
steps.

I. Solve thereducedequation (2.7.16) foy. (Find all solutions.)

[I. With each value ofy, found in step I, go back to theubstitutionrequation (2.7.15), and
solve forz.

Example 2.7.5. Suppose we want to find all solutions of the equation

cos (2;5 — %) = %

Using the method outlined above, we start off with the sitsdin

2 — g —y, (2.7.17)
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so the given equation reduces to the elementary cosineiequat
1
cos Y = 5. (2.7.18)
l. Using what we learned about elementary cosine equatadisplutions of (2.7.18) are:
1 .
y = *£ arccos (5) +2nm = :I:g + 2nm, n integer (2.7.19)
Il. With the above values af, we now go back to the substitution (2.7.17), which becomes

20 — g = :I:g + 2nm, n integer

Since the above equationlieear, in order to solve it, we first ad%, which yields

20 = g + g + 2nm, n integer

and then we divide bg, which is the same as multiplying bé/ which gives (after distributin%

to all terms):
1 .
xr = Q{gigjﬂnw} :%i%err,nlnteger
If we wish, the above solution(s) can be “cleaned up” a Ilttteby splitting the list into two halves
(depending on whether or — is selected). As a result, we find that our solutions can bieleli/
into two nicer looking lists:
+

x = +nm = g + nm, n integet (2.7.20)

& ol

= = — = 4 nm = nm, ninteger (2.7.21)

S Rl I

S|

CLARIFICATION. The technique used in the Example above applies toailrly” elementary
equations, which are those of the form

function(expression irz:c) = number (2.7.22)

wherefunction is either one okin, cos, or tan. The use of the phrase “nearly elementary” is
justified by the observation that, once we makeaagle substitution

expression inc = y,
the equation will be transformed into an elementary equnatio

function(y) = number
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For other (complicated) equatiorfsinction substitutionare also helpful, as seen in the fol-
lowing example.

Example 2.7.6. Suppose we want to find all solutions of the equation
2sin’t — 3sint —2=0. (2.7.23)
Start off with the function substitution
sin t = z, (2.7.24)
so the given equation reduces to an easy quadratic equation.
222 —32—-2=0. (2.7.25)

l. Using the Quadratic Formula, the solutions of the redwsmpahtion (2.7.25) are

o —(=3)+£+/(-3)?—4-2-(-2) 3+£5
N 2.2 4
3+5 3—5 1
A » Ty 2 (2.7.26)

21

Il. Using all solutions (2.7.26) of the reduced equationgeéack to the substitution equation
(2.7.24), which we need to solve far
(A) When we use; = 2, the substitution equation (2.7.24) reads

sin t = 2,

which hasno solutiori
(8) When we use, = g the substitution equation (2.7.24) reads

N
sin t = ——,
2

which has as solutions (see Example 2.7.2):

(71)1{%171.

t =
6

+ km, k integer (2.7.27)
So our conclusion is as follows. The given equation (2.7ki28)as solutions all the numbers given
in the list (2.7.27).

Equations Involving More than One Function

So far, we have only treated equations where a single trigetwac function is involved. When
two or more functions are involved, it is desirable to redii@equation to one in which only one
function appears. This is illustrated in Example 2.7.7 elSometimes, where such a reduction
is not feasible, additional techniques, for instafexeoring might be helpful, as demonstrated in
Example 2.7.8 below.
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Example 2.7.7. Consider the equation
sec?u = tan u + 1. (2.7.28)
Although two functions contribute to this equation, usihg Pythagorean identity
sec?u =1+ tan®u
we can eliminate the secant, so our equation becomes
1+ tan®u = tan u + 1,
which by subtracting the right-hand side becomes
tan®u — tan u = 0.

Using the substitution
tan u =y, (2.7.29)

our equation reduces to
v —y=0. (2.7.30)

I. Using either the Quadratic Formula, or factoring, theusohs of the reduced equation
(2.7.30) are
y1=0; 1y =1. (2.7.31)

Il. Using all solutions (2.7.31) of the reduced equationgeéack to the substitution equation
(2.7.29), which we need to solve far
(A) When we use;;, = 0, the substitution equation (2.7.29) reads

tan u = 0,
which has as solutions:
u = arctan 0 + nm = nm, n integer (2.7.32)
(8) When we useg; = 1, the substitution equation (2.7.29) reads
tan u =1,
which has as solutions:

u=arctan 1+ nm = % + nm, n integer (2.7.33)

So our conclusion is as follows. The given equation (2.7k28)as solutions all the numbers given
in the lists (2.7.32) and (2.7.33).

Example 2.7.8. Consider the equation

2sin 2x cos x = cos . (2.7.34)
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By subtracting the righ-hand side, the equation is equntate
2sin 2x cos x —cos x = 0,
which by factoring the left-hand side, reads:
(2sin 22 — 1) cos © = 0. (2.7.35)

Since the left-hand side is factored and the right-handisidero, the above equation can be split
by setting each factor equal zero, thus

2sin 2x —1 =0, or (2.7.36)
cos x = 0. (2.7.37)

We now solve each equation separately.
(). The equation (2.7.36) can be easily transformed (byrapltl then dividing by2) into

1
5

Using the substitutiofx = y, this equation reduces to

sin 2r =

) 1
sin y = —
y=15
which has the solutions presented as
| BT .
y = (—1)"arcsin (5) + kr = (-1) 3 + km, k integer

When we go back to our substitutian = y, we get2y = (—1)’“% + k7, which after dividing by

2 (which is same as multiplying b%/), yields

_1\k .
r== [(_1)/{ + lm} = % + %ﬁ k integer (2.7.38)

(i) The equation (2.7.37) has as solutions precisely:tieterceptsof cosine, so its solutions
are simply
xr = g + km, k integer (2.7.39)
So our conclusion is as follows. The given equation (2.7k28)as solutions all the numbers given
in the lists (2.7.38) and (2.7.39).

Exercises

In Exercises 1-9 you are asked to fialil solutions of the given elementary trigonometric
equation, using the “clean” solution method. Ws@&ct values

1. sinex = —
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. V3
2. silny = ——
2
3. cosx:@
2
4, cosx:—ﬁ
2
5 tanz = —1
6. tanz = /3
7. tanz = —/3
1
8. tanzx = —
V3
9. tanx = ———
V3

In Exercises 10-15 use Example 2.4.3 from Section 2.4 asdeljue (with basic solutions
replaced by “easy” solutions), to solve the given elemgrgguation in a specified interval.

10. Given the equatiosinz = —0.4, find only the solutions that are in the interyair, 3r].
Round to nearest01.

: . 1 . : . .
11. Given the equatiofin z = —5 find only the solutions that are in the interval2r, 27].
Use exact values.

12. Given the equationosz = 0.8, find only the solutions that are in the intervalr, 37].
Round to nearest01.

V2

13. Given the equatiotbs z = 5 find only the solutions that are in the interyal2r, 47].
Use exact values.

14. Given the equatiotan = = +/3, find only the solutions that are in the interyalr, 67]. Use
exact values.

15. Giventhe equatiotan z = —3, find only the solutions that are in the interyal 67]. Round
to neares0.01.

In Exercises 16—25 you are asked to fallbsolution of the given trigonometric equation. (Use
exact values)

16. cos <g — 4x) =1

T 1
17. sin ( 4z + — | = =
sm(x 10) 2
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18.

19.

20.

21.

22.

23.

24,

25.

26*.

27.

28.

29.

tan <6x + ?ZTW) = -1

4sin®z =1

2sin't — 3sin®t+1 =0

cos*z +cos’x —2=0

4sin®y = cosy — 1
cos’w + 3sinw = 3
sinucosu +sinu —cosu —1 =0
tants = 1.

Rewrite the elementary equatioss x = numberas
. T
sin <x + 5) = number

Solve the above equation using the “clean” solution metloodhe sine equation combined
with the substitution: + g = y, to come up with an alternate single solution list for the

elementary cosine equation, which usesithein function. (Although such an alternate list
involves number likg —1)*, it will have the advantage of listing the numbersriareasing
order.)

Solve the equatiodicos? x — 10 cosz + 3 = 0 in the interval[—7, 37]. Round to nearest
0.01.

Solve the equatioran? x = 100 in the interval—n, 7]. Round to neares$t01.

Solve the equatiotsin® x + 7sinz — 2 = 0 in the interval[—3x, 37]. Round to nearest
0.01.






Chapter 3

Applications of Trigonometry in Geometry

In this Chapter we discuss several applications of Trigogtoyrin Geometry, the most impor-
tant of which are concerned withangle solving problemsas discussed in Section 3.2.

3.1 Applications to Vector Geometry

In this section we explore several aspects of Vector Gegniretivhich Trigonometry plays a
key role.

Vector Direction Revisited

When we first introduceslectors in Section 2.1, we mentioned that, with one exception (the
zerovector), each vector is completely characterized bylitsctionandmagnitude However, we
were a bit imprecise about whdirectionreally meant. What we chose to do in Section 2.1 was to
think directionsas corresponding ti@ys on a compasdiowever, if we decide to fix our compass
to be theunit circle, then we can think of directionas being nothing else buuait vector, that is,
avector of magnitude equal fio With this interpretation in mind, we have the followingtstaent,
which we also use as a definition.

Unit Direction Vectors

Everynon-zerwector7 can be presentaghiquelyas
v =1, (3.1.1)

with » > 0 and || || = 1. The unique unit vectord from this presentation is called the

unit direction vector of V. The main features of the presentation (3.1.1) are as fellow

(A) The numben from (3.1.1) is:r = || V|| (the magnitude o). The unit direction
vector i can be reconstructed out of by the identity

()"

(B) Two vectors, presented as above, in the farm= », u; andv; = r, us, have:
(i) same directionif and only if their unit direction vectors coincider; = u3;
(i) opposite directiongf and only if their unit direction vectors are opposites of eac

%
other:uj +u, = 0.

=

Example 3.1.1. Consider the vectors; = { _34 } Vi = { 0 } andv; = { —12 } A

141
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quick calculation of magnitudes gives

IVi]| = V32 + (—4)> = V9 + 16 = V25 = 5,

|v5] = /6% + (=8)2 = V/36 + 64 = v/100 = 10,
|v5| = V/(—12)% + 162 = V144 + 256 = V/400 = 20,

so the unit direction vectors are

L (1 N\ 137 T 35

RN vl—g[_4]—[_4/5}v

S R R AR
(1 Y 1 [-127 [-12/207 [-3/51
RN V?’_Q_O{ 16 ]_[ 16/20 }_[ 4/5 }““1’

so we can say that, hassame directiorasv;, while v hasdirection oppositeo the direction of
%
Vi.

The Dot Product of Two Vectors

Ty

Given two vectors written in coordinates = { y
1

}, vy = [ 22 } we define theidot
2
product to be the quantity

= =
Vievy = x1T2+Y1Y2.

(3.1.2)

Straight from the definition it is pretty obvious that thisepation, which combineisvo vectordo
produce anumber has the following features.

Properties of Dot Product

|. Symmetryvievs = vievi.
%

II. Distributivity in first variable: (vi +

Ill. Distributivity in second variablevie (v
_)

V. Magnitude Identity:v'ev = ||V|[".

As suggested by the identity V, dot products are intimatelgted to magnitudes. This rela-
tionship can be deepened to yield the following importamssguence.
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Pythagoras’ Generalized Theorem

For any two vectors’; andvs, the maghnitudes of their difference and sum satisfy:
[FE=5]" = 92" + (|93 "2 (ie¥2): (3.1.3)

[F3° = [P + [RI+2(e%). 31.4)

Proof. Both identities follow from the properties of the dot pratiuFor example, to prove
(3.1.3), we start off with the left-hand side, which we re@aising the Magnitude Identity:

¥ =% = (71 - %2)e (%1

= (Vl —V2)e(Vv] —‘72)),
and then using distributivity and symmetry we can write

[0 = WA = (1071) — (7e7%) — (102) + (P2052) =
2

_ (@e7) + (72o7) — 2(T07).
The identity (3.1.3) now follows immediately by replacifigievi) = ||vi||* and (viev3) =

O

H\TQHQ The identity (3.1.4) is proved the exact same way.
Example 3.1.2.Suppose we are given two vectarsandvs, of which we know thaf|vi|| = 5,
|¥3]| = 7, and||vi —¥3|| = 10, and we want to compute their dot product, as well as the raggi
of their sum.
After we replace three of the known quantities in (3.1.3),gee

102 = 5% + 72 — 2(Viev3),

which yields
—2(Vievs) = 10? — 5% — 72 = 100 — 25 — 49 = 26,
. . 2
so we immediately get;ev) = (26 —13.

Now we can use (3.1.4) and get

I

|97 + V3| = 52 + 72+ 2. (~13) = 25+ 49 — 26 = 48,

which gives'! H‘71> + \7§H = /48 = 44/3.
The Skew Product of Two Vectors

Given two vectors written in coordinates = { ;1 } vy = { ';72 } we define theiskew
1 2
product to be the quantity
VIAVS = T1Y2—T2Y1- (3.1.5)

Straight from the definition it is pretty obvious that thisepgtion, which again combinds/o
vectorsto produce amumber has the following features.

11 Of course, when we look at the equatith= 48, it will always have two solutions? = ++/48. However, since
magnitudes of vectors are always0, we will only retain the positive solution.
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Properties of Skew Product

l. Anti-SymmetryviAvs = — VAV
Il. Distributivity in first variable: (\7{ + \7%)/\\73, = V] AVS
lIl. Distributivity in second variableVi A (V5 + V3) = Vi AVS + VIAVS.
IV. Homogeneity in first variable{tvi ) AV = t(VIAVS).

IV. Homogeneity in second variablgi A (tv3) = t(ViAV3).

@ When compared to the dot product, the skew product is a bisualu because of anti-
symmetry, which yields
VAV =0.

Therefore, there is no direct way to relate skew productsagmiudes.

Trigonometric Forms of Dot and Skew Products

Up to this point, Trigonometry has not played any role in agcdssion, but now it will become
a key player in our story, which begins with the following défon.

The geometric angleformed by twonon-zerovectorsv; andv; is the geometric angle
£V OW which is constructed as follows:

v Vi

O
Figure 3.1.1

e O istheorigin in the coordinate plane;
e 1/ is the (unique) point that has as its position vector with respect to the origin, that ig:

ovy = \71>;
e 15 is the (unique) point that has as its position vector with respect to the origin, that is:
OV, = 5.

As usual, we identify this angle with its radian measure, weagnumbery in the interval
[0, 7]. (When using degrees, the values will range fr@no 180°.)

As it turns out, the geometric angle formed by two vectors&it only depends on the direc-
tions of the two vectordn other words, if we replace each vector byutst direction vectoythe
geometric angle ithe same

Besides geometric angles between vectors, one can comsideiant which accounts fari-
entation To understand how these new angles come about, all we hal@ i®to consider the
rotation angle which has one vector sitting on its initial side, and theeothector sitting on its
terminal side.
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™

T2

Figure 3.1.2

For example, Figure 3.1.2 depicts one such rotation an@eraﬁ is thefirst, also called the
initial vector, whilevs is secong also called theerminal vector. In order to make this rotation
angleuniquelydetermined, we have to specify its meastrahich by convention we chose to be
in the interval(—, 7|. Once this measure is selected, the resulting rotatioreaageferred to as
turning angle of v; over v5. As was the case with geometric angles, we will identify auning
angle with its radian measure

@ The turning angle constructepends on the ordén which we specify the two vectors.
T
T

—T

Figure 3.1.3

More precisely, if we switch the order, then as seen by comgafigures 3.1.2 and 3.1.3 above,
the following change takes place.

Assume twanon-zerovectorsv; andvs are given. If the turning angle of; overv; is T,
then the turning angle dfg over\71> IS —7.

The turning angle is closely related to the geometric aragesxplained below.
Turning Angle Sign Rule

Assumev; andv; are twonon-zerovectors, and the geometric angle between them is
Then the turning angle of Vi overvs is given as follows:
. If v can be rotated over; by a~-turn in thecounterclockwise directigrthenr = ~.
Il. If Vi can be rotated over; by a~-turn in theclockwise directionthenr = —~.
In either case, one has the equality= |7|.

There is yet one more way to look at turning angles, whichregiith the observation that
(exactly as was the case wigeometricangles)turning angles depend on the directions of the
initial and terminal vectorsIn other words, if we replace each vector byutst direction vectoy
the turning angle ishe same The second observation is that, if we start with twot vectorsu;
(the initial vector) andi, then the turning angleof u; overus, has the property that the associated
-rotation (about the originiransformsu; into us. Putting those two observations together, we
get the following characterization of the turning angle.
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Given twonon-zerovectorsv; andvs, with respective unit direction vectors andus, the
turning angler of v; overv; is thethe unique number in the intervér, 7|, that satisfie
the matrix product identity:

(7]

=R, uj, (3.1.6)

whereR,; is ther-rotation matrix given by

sinT COST

R - |

coST —sinT }

With all these preparations, we can now state the following.

Dot/Skew Product Theorem

Letv; andv, be two vectors in the plane
I. Assumingboth vectors arenon-zerq if the turning angleof v; over v; is 7, and the
geometric angldetweenv; andv; is v then the dot and the skew products are given bj:

vievs = ||vi Vil - cosT = H\T{H . H\T%H - COS Y (3.1.7)
VIAYS = ||v] vl - sinT (3.1.8)
Il. If either one othe vectors izerq then:

Vievs = VIAVE =0

Proof Case Il is pretty clear right from the definition. In Case & write v = r,u; and

V4 = rou3, Using the unit direction vectors, so by homgeneity we catewr
Vievs = riry (0] els); (3.1.9)
\71>/\\72> = 7Ty (1T1>/\1T2>) (3.1.10)

If we write our two unit vectors in coordinates as$ = { zl } anduj = { ';2 } then using the
1 2

above characterization of the turning angleve have

Ty | | cosT —sinT T
yo | | sinT  cosT yr |’
which after multiplying the matrices gives the equalities
Ty = T1COST — y18in T
Yo = 1SINT + Y1CO0ST
Using these equalities, we now can express the dot and skelugis of our two unit vectors solely
in terms ofz, y; andr:
1T1>01T2> = T1T2 + V1Yo = T (371(:057 — 7/18in T) + 1 (ﬂ?lsinT + 1, cos 7') =
= ﬂ?fCOST — T1y18in T + xqyi8in T + y?COST = (Tf + yf)cos T;
1T1>/\1T2> = T1Ys — Y1To = ml(mlsinT + y1cos T) — 1 (371COS7' — 1/18in T) =

24; 2 2 2 o
= xSINT + T1Y1COST — T1Y1COST + yySIn T = (371 + yl)sm T.
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Using the fact thati; is a unit vector, we know?+ 2 = HlﬁHz = 1, so the above two calculations

simply give

Vievh = 7*17‘2(17101?2) = 77y COST = HVIH . HV;H - COS T, (3.1.11)
VIAVS = 7‘17‘2(1?1/\172)) =rirysinT = H\ﬁ” . H\72>H -sinT (3.1.12)

The second equality in (3.1.7) follows immediately from finst one, since we know that= +-,
so regardless of the sign (since cosine is an even functiaipavecos 7 = cos 7. O

Example 3.1.3. Suppose two vehicles started their trips in the desert ftoensame point,
and drove on two straight lines as follows: the first vehiglave 70 miles in the No5°E direction,
while the second vehicle drow® miles in the $5°E direction. We wish to compute the distance
between the two vehicles at the end of their respective.trips

The trips of both vehicles can be completely described uswogvectors as, depicted as in the
Figure below.

N
B
v \B-d
W E
| 65°
S
Figure 3.1.4

The vectorp shown above indicates the position of the first vehicle, ovéi agree that our

length unit is the mile) it has magnitudgy || = 70. The second vectoq shown above indicates
the position of the second vehicle, so it has magnitlidg| = 80. With these preparations, the
distance we need to compute is precisely the magnifide- q .

Although is it possible to compute this distance using cow@igs (as seen for instance in
Example 2.1.3 from Section 2.1.), it will be a lot simpler iewse the dot product. From Figure
3.1.4 we can also read off the geometric angl®rmed by our two vectors, because we clearly
have55° + v + 65° = 180°, which yields:

7 = 180° — 55° — 65° = 60°.

Using the Dot/Skew Product Theorem, it follows that

Ped =||P| || - cos60° =70 - 80 - % = 2800. (3.1.13)
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With this calculation in mind, we can now use Pythagoras’ &alized Theorem to conclude that
15 -4’ =7 Ped =707 +80% — 22800 = 5700,
and then (since magnitudes are non-negative), the dessthde is:
|7 — || = V5700 = 10v/57 ~ 75.49834435 miles

The Dot/Skew Product Theorem is very useful, because ivallone to compute the angles
formed by two vectors, as summarized below.

Vector Angle Formulas

Assumev; andv; are twonon-zerovectors. Theurning angler of vi overvs; is theone
and only one angle in the intervél-r, 7| that satisfies the equalities

Vievs
R AN i T
(3.1.14)
. V1/\V2
SN 7
RERE]

In particular, the two angles (geometric and turning) fodnfy the two vectors can be
computed as follows.
I. Thegeometricangley betweenv; andvs, is given by the formula:

—
= arccos <’ MAAE ) (3.1.15)

Il. In terms of~, theturning angler of v; overv, is given as
7 = (sign of Vi AV3) 4 (3.1.16)

(We agree that, when, AVS = 0, the abovesignis +.)

CLARIFICATIONS. The formulas (3.1.14) follow from the Dot/Skew product dhem, which
also gives us N

VieVy
RN
However, since by constructionbelongs to the intervdD, 7|, which is therangeof arccos, by
the inversion formula we have the equality= arccos (cos 7), and then formula (3.1.15) follows
from (3.1.17).

(3.1.17)

cosy =

-7

—1

find the geometric angle between them, as well as the turning anglef v; overvs.
We start off by computing magnitudes and the two products:

¥l = VTP T 1 = VI8 = V0 = 572
V3| = \/62 +82 = /36 + 64 = v/100 = 10;
Vievh = (=T7)- 64 (—1)-8 = —42 — 8 = —50;
VIAVS = (=7)-8 — (—=1)-6 = =56 + 6 = —50.

Example 3.1.4.Suppose we have the vectors = { andvj = g } , and we want to
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Using the formula (3.1.15), the geometric angle is:

( —50 ) ( 1 ) 3

= arccos = arccos | ———= = —.

! 5v/2- 10 V2 4

Since the skew produét Av; is negative using (3.1.16), the turning angle of overv; is:

3
T

T =

Orthogonality

The Vector Angle Formulas can be efficiently applied to goestconcerning perpendicularity
(a.k.a.orthogonality or parallelism, as illustrated below.

Orthogonality and Parallelism Tests

|. Two non-zero vectors; andvs areperpendiculayif and only if:
vievs = 0. (3.1.18)

Il. Two non-zero vectors; andvs areparallel, meaning that they either hagame direc-
tion, or opposite directiongf and only if:

VIAVS = 0. (3.1.19)

CLARIFICATIONS. Concerning statement I, one can in fact be a bit more peetisondition
(3.1.19) holds, which is the same as saying that the geaaetgley formed by the two vectors
is either0 or 7, thencosy = +1, so the dot product will be

Viewh = =[] [,

SO0 we can simply say that

ll-a. vi andvj havesame directionif and only if:
ViIAVS =0 andvievs > 0 (3.1.20)

I-b. v; andv} haveopposite directiongf and only if:
VIAVS =0 andvievs < 0 (3.1.21)

An important application of the Orthogonality Test is con&al in the following important
statement. (The proofis outlined in Exercise 21.)
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Vector Component Theorem

If W is anon-zerovector, then any vector’ can be writteruniquelyas a sum
V=P+T1,

with:
(i) P eitherzerq or parallel to W;
(i) ™ eitherzerq or perpendiculato w.
Additionally, the vectorslo_@> and T have the following properties.
(A) The vectorp is given by:
Vew Vew
(B) If V is non-zero, and is the geometric angle between andw, then the vectorp
can also be presented as:

- _ M)W 3.1.23
¥ ( EimAd (5429

=l

N
p

Figure 3.1.5

TERMINOLOGY. The vectorsp and T are referred to as theomponents of/ relative tow.

More precisely:

(i) the vectorp is called thecomponent of along(or parallel to) w; this same vector is also
referred to as thprojection of v on the direction ofw, and is denoted bgroj  (V);

(i) the vectorw = V — proj (V) is called thecomponent of which is perpendicular(or
normal to w.

Areas of Parallelograms and Triangles

We now put everything we learned to very good use, by derigingry useful formula for the
area of a parallelogram.

Parallelogram Area in Vector Form

If v andw are twonon-zero, non-paralleVectors, then the parallelograg? formed by
them has:
Ared Z) = |V AW|. (3.1.24)
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In particular, ifv is the geometric angle formed by these two vectors, we alse tfe
equality:
Area 2) = || V] - || W] - siny. (3.1.25)

Proof. When we apply the Vector Component Theorem, we can write
V=Pu,

with P parallel tow, and ™ perpendicular tow .

W
Figure 3.1.6

It is pretty obvious that, when we set up our parallelogratmaeew as its base, its height will
be exactlyr’, so we will have
Area= || B| - ||| (3.1.26)

On the one hand, sincg perpendicular tow . it is clear that
. T
TAW = [T - [[W] -sin (£5) = £[[7]|  [[W]],
so using (3.1.26) we can now write
Area = |TTAW|. (3.1.27)
On the other hand, sincg parallel tow, we havep AW = 0, so by distributivity of the skew

product we have
VAW = (B+T0)AW = BPAWHTAW = TAW,

so in (3.1.27) we can substitute the right-hand side with w, which gives us precisely the
desired formula (3.1.24).

As for the second formula, all we have to remember is the featt by the Dot/Skew Product
Theorem, we know tha¥’ AW = || V|| - |[W]| - sin 7, wherer is theturning angle of v over
Ww. Since we also know that= =+ ~, we always havein 7 = = sin~, thus

VAW = =+ HVH . HW}H - sin 7,
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and then by taking absolute valu&ghe + sign goes away, thus yielding (3.1.25). O

2 —8
the area of the parallelogram formed by these vectors. Alhaxee to do is to compute the skew
product:

Example 3.1.5.Suppose we have vectors = | andw = [ -2 } , and we want to find

VAW =3-(=8) — (—2)-2=—24+4 = —20,

and then we conclude that the areqs20| = 20.
Using the parallelogram area formulas, we immediatelyialitee area formulas fdriangles

Triangle Area in Vector Form

If v andw are twonon-zero, non-parallefectors, then both triangleg and.Z’ that can
be formed by them have equal areas:

Ared T) = Area T’) = |V AW|. (3.1.28)

In particular, ify is the geometric angle formed by these two vectors, then selave the
equalities:
Ared 7) = Area.T’') = L ||¥]| - [|W]| - siny. (3.1.29)

Proof. The two possible triangles that can be formed by the twoore@re depicted below.

w w
Figure 3.1.7

No matter what triangle we choosé&’(or .7"), it is pretty clear that the parallelograg# formed
by the two vectors consists of two congruent copies of thesehdriangle, so both triangles will

have areas
AreaT) = AreaT') = 3 - Area ),

and then everything follows from (3.1.24) and (3.1.25). 0J
CLARIFICATIONS. Additional area formulas are provided in Exercises 23-24

Exercises
In Exercises 1-4 you are asked to compute the dot and skewgrotithe given vectors.

1.7:{3]%1@:{2}.

12 Sincey is in the interval0, 7], we always know thatin v > 0.
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2.?::4:andW:_3}

3.7:-_4-andW}:-2}.

[ —5 ] [ 2
4. vV = ) andw = _1}

In Exercises 5-7 you have to use the given information to agmfhe exact value of the dot
product. v e W

5. V] =3, %| =5,V + %] =
6. | V] =10, [|W| =21V -W]=9
7|V +w| =5V -w| ="

In Exercises 8-11 you are asked to find the geometric angleéhentlirning angle of each of
the two vectors over the other one.

8. V = ; } andw = { —21 } Use exact values.

9. V = _44 } andw = [ (1) } Use exact values.

10. vV = ?) } andw = { 1 } Round to nearest 0.01 of a radian.

1

11. vV = V3 } andw = { _1/3 } Use exact values.

In Exercises 12-15 you are asked to compute the projection oh the direction ofw, where
the two vectors are given in each Exercise.

12.V:::”andw>:[§].

13. V = :SQ}andW}:{_ll}.

14. V = :_Sl}andwzlé}.

15. V = :Handwz{a}

In Exercises 16-19 you are asked to compute the area of thighagram formed by the given
vectors.



154

3.1. APPLICATIONS TO VECTOR GEOMETRY

16. vV = -1}andW}:[2}.
17. vV = :_4}andW}:[_3}
18. V = -Q}andW:{Z}.

19.7::3}andW:{ 2 }

3

—1

20. A Pythagorean Identity. Either using the trigonometric formulas, or the algebragtird-

21,

22¢.

23,

tions of the dot and skew products, prove that for any twoorsat; andvs, one has the
equality
(o) + (FAR) = |9 [ (3130

Proof of the Component Theorem.Supposew and v are two vectors, witfw 6> and
assume that we have

VB4,
with: (i) P eitherzerq or parallelto w; (i) T eitherzerq or perpendicularto w.
Vew
%
(a) Use condition (i) to gefew = 0. Then using the fact thali = vV — , obtain the
equality:7oW = ﬁ.W?
(b) Argue that, by condition (i), the vect(ﬁ must be of the form
P =W, (3.1.31)
for some numbet, and use parta) to conclude that satisfies the equalities
Vew = t(WoW) = 1‘HWH2

(c) Solve the above equation farthen replace in (3.1.31) and obtain the desired formula.

Prove the equalityy = ( w, following the steps below.

Supposev, v, P and 1l are as in the preceding Exercise, andylée the geometric angle
formed byw and V. Prove that the magnitudes of the vectgfsand 1 are: || || =

| V]| - |cos~| and || X || = || V]| - sin~. Either directly, or using these equalities, prove
that:

B+ = = (191" (3.1.32)

Prove that, given two non-parallel and non-zero vectorand w, the area of the parallel-
ogram.# formed by them can also be computed as:

Ared 2) = |V - || - (Ve W)’ (3.1.33)
Conclude that the two triangles and.7”’ formed by the two vectors have areas:
Ared 7) = Ared T) = 1| V][R - (Vo W) (3.1.34)

(HINT: Use the Pythagorean identity (3.1.30) from Exercise 20.)
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24*. Use the set-up and notations as in Exercise 23. Prove tladigeg!

wea?) = WIS - (9 9 - 9 - S 619)
Aed 7) = Area 7') = 1 [ - (15 £ 1 - 9] - [9]F)"
(3.1.36)

(HINT: Use the preceding Exercise, and the Pythagorean fornilag) and (3.1.4).)

3.2 Applications to Triangle Geometry

When were first introduced to the worcRIGONOMETRY, we learned that it has something to
do with triangles This was explained very early in the course, when we usedrig@ometric
functions to solveight triangles. With the help of of two fundamental results wegoing to learn
about in this section (theAw oF CosSINE and the law OF SINES) we will be in position to solve
arbitrary triangles.

As every triangle has six elements (three sides and thrdesinthe problem o$olvingthem
will be divided into several cases, for which the followiradpeling convention is used.

CASE | GIVEN DATA Elements to find

SSS | Three sides Three angles

SAS Tva/o sides, and the angfermed by the given One side and two anglegs
sides

SSA Tva/o sides, and an anglecing one of the givgnOne side and two angles
sides

ASA | One side, and two angleseither of which| Two sides and one angle
faces the given side

AAS | One side, and two anglesie of which face$ Two sides and one angle
the given 'side

Table 3.2.1

@ When dealing with problems that require triangle solving meed to be aware of the
following:

A. Most of our problems are solved with a calculator. In mosesdbe problem demands the
angles to be computed in degrees, so the calculator must teedsegree mode.

B. The Labeling Convention from Section 1.1 is in effect. So whe deal, for instance, with
atriangleAABC, R
o the lettera denotes the sid8C', whichfaces the anglel;
o the lettera denotes the siddC', whichfaces the anglé;
¢ the letterc denotes the sidd B, whichfaces the anglé€’.

C. Identifying the correct case is essential in a successfutisa!

The Law of Cosine (a.k.a Pythagoras’ Generalized Theorem)
We have already seen Pythagoras’ Generalized Theorenmpedse Section 3.1 in the form
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that involves thelot product which gave us two identities (3.1.3) and (3.1.4). The oeaiidy we
are interested in is (3.1.3), which reads:

9T =98] = [+ 195" — 2(¥% « ¥2). (32.1)
If we replace the dot product using its trigopnometric forne, @an also write the above identity as:
98 = 93|° = 21+ 19207 =2 [[53]] - |2 - cos . (3.2.2)

where~ is thegeometric angléormed by the vectors] andvs.
Suppose now we have a triangle, and we label its sideglas side;, andside;.

side, v

Figure 3.2.1

Suppose we place two vectovs and v, sitting on the two sides as shown above, so we can
identify |vi|| = side and||v3|| = side. Using the triangle rule, it follows that the vector
V5 = vi—vs has magnitudelv;—v;| = side. With all these identifications, we can re-write
(3.2.2) in a form that does not refer to any vectors whatspeu®d thus obtain the following

fundamental statement.

The Law Of Cosine

Any triangle, with sides labeleside , side, andside;, satisfies the identity:
[side]? = [sidg]® + [side]? — 2 - side - side - cos (angle facingside;). (3.2.3)

The reason we refer to the Law of Cosine as Pythagoras’ Gereztd heorem is the fact that,
in the special case when the angle facangg; is aright angle(in which case its cosine is zero),
we recover Pythagoras’ usual Theorem, since the trianghedd byside , side,, andside; will be
aright triangle, with side; as itshypotenuse

CLARIFICATION. With the set-up from the statement of the Law of Cosine, weafecourse
switch the sides around (by relabeling), so besides (3. &3vill also get two additional identities:

[sida]* = [side]® + [side]* — 2 - side, - side, - cos (angle facingside ); (3.2.4)
[side]* = [sidg]® + [side]* — 2 - side - side, - cos (angle facingside). (3.2.5)
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Also, by easy algebraic manipulations, we can re-write flgB®.3), (3.2.4) and (3.2.5) as:

side]? + [side)* — [sidg]*

cos (angle facingside ) = > sids . side : (3.2.6)

. ..\ _ [sidg]*+ [sidg]* — [side]*

cos (angle facingside,) = 3 side . Sida : (3.2.7)
.\ _ [sida]?+ [sidg]* — [side]?

cos (angle facingside;) = > sida . side . (3.2.8)

Solving the SSS Problem

If we are given all three sides of a triangle, the three anggesbe easily computed using the
formulas (3.2.6), (3.2.7), (3.2.8). Since each one of tii@seulas leads to an equation of the form

cos 7 = number

and the unknown angle is in the interyal =) (or (0°, 180°), if we use degrees), the above equation
will only have one solution, given by theccosindunction. So we can safely rewrite each one of
the equalities (3.2.6), (3.2.7), (3.2.8) in the followirayrh.

Derived Law of Cosine for Angles

The angles of any triangle, with sides labetede , side,, andside;, are given by
angle facingsidg = arccos ([Sideé]z—?-s[istjgej’];;%[gdei?); (3.2.9)
angle facingside, = arccos ([SidQ]ZTS[zZe‘T’]:i;QESidQ]2>; (3.2.10)
angle facingside, = arccos <[sidq]l—.i—s[isdi:e%];;ez[sid%P)‘ (3.2.11)

Based on these formulas, the SSS problem can be solved@asdoll

Solution of the SSS Problem based on Law of Cosine

Given three sides in a triangle, we find the three angles &snfsl
I. Find two missing angles using two of the formulas from thexized Law of Cosine for
Angles.
[I. Once two angles are found, the third one is found by satitrg the two angles found in
step I, from180°.

@ In the case of an SSS problem, it is quite possible to maveolution! This would happen
precisely wherone of the triangle inequalitiesidg + side, > side;, sidg + sidg > side,
side + side; > side, fails. For example, if we want to solve a triangle with sides 5, b = 10
andc = 17, we quickly see that the inequality+ b > ¢ does not workso we havelo such
triangle!
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Example 3.2.1. Suppose we want to solve the triangled BC', in which we are given = 7,

b = 5andc = 3 (all measured in inches).
The procedure outlined above is carried on as follows.

|. We begin by finding the angleg and B:

~ b+ c? — a? 52 + 32— 172 15
A = arccos <u> = arccos <;L573> = arccos <—%> = 120°;

2be
~ 242 p? 72 + 32 — 52 33
B = arccos <%> = arccos <%> = arccos <E> ~ 38.2132107°.

Il. With the two angles we found, we can find the third angle:

C =180° — A—B ~ 180° — 120°—38.2132107° ~ 21.7867893°.

Solving the SAS Problem

If we are given two sides of a triangle, and the angle formethbyn (which faces the missing
side), then we can find the third side using the Law of Cosingny one of its presentations:
(3.2.3), (3.2.4), or (3.2.5). Since each one of these foasldads to an equation of the form

[missing sidg = number

and the unknown ipositive we can take the square root, so we can safely rewrite eacbfahe
equalities (3.2.3), (3.2.4), (3.2.5). in the following rior

Derived Law of Cosine for Sides

The sideside, side, side;, in any triangle, satisfy the equalities
sidg = \/[sid@P + [sidg]? — 2 - side - side; - cos (angle facingside ); (3.2.12)
side, = \/[siqu + [side;]2 — 2 - sidg - side; - cos (angle facingside). (3.2.13)
side, = \/[siqu + [side]? — 2 - sidg - side; - cos (angle facingside). (3.2.14)

Based on these formulas, the SAS problem can be solved aw$oll

Solution of the SAS Problem based on Law of Cosine

Given two sides of a triangle, and the angle formed by themfimgethe third side and the

other two angles as follows.
I. Find the missing side using one of the formulas from thei@er Law of Cosine for

Sides.
Il. Find one of the missing angles using one of the formulasnfthe Derived Law of
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Cosine for Angles.
[ll. Once one missing angle are found, the third one is foundubtracting the two angles
(the given one and the one found in step Il) frago°.

Example 3.2.2. Suppose we want to solve the trianglel BC', in which we are given = 10,
b = 5 (both measured in inches), and= 35°.

The procedure outlined above is carried on as follows.

I. We begin by finding the third side

c= \/a2 + b2 — 2abcos C = V102 +52—2-10-5 - cos 35° ~ 6.563900942 in.

Il. Next we find one of the two missing angles

~ <62 +c?— a2> <52 + 6.5639009422 — 102
——— ) = arccos

A = arccor ~ 119.0926395°.
areeos 2bc 25 - 6.563900942 ) 90926395

l1l. With the two angles?l = andC in hand, we can find the third angle:

B =180° — A—C ~ 180° — 119.0926395°—35° ~ 25.9073605°.

Area Formulas

When we obtained the Law of Cosine using the dot product, vieeygul” with two vectors,
which we placed on two sides of the triangle. Using Figure13ds a guideline, we can also
compute the area of the triangle, with the help of formuld.@) from Section 3.1, which reads:

Area.