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Preface

These notes were developed as part of a course on differential geometry which
the author has taught for many years at UNCW. The first five chapters plus
chapter six, constitute the foundation of the three-hour course. The course is
cross-listed at the level of seniors and first year graduate students. In addition to
applied mathematics majors, the class usually attracts a good cohort of double
majors in mathematics and physics. Material from other chapters have inspired
a number of honors and master level theses. This book should be accessible to
students who have completed traditional training in advanced calculus, linear
algebra, and differential equations. Students who master the entirety of this
material will have gained insight on very powerful tools in mathematical physics
at the graduate level.

There are many excellent texts in differential geometry but very few have
an early introduction to differential forms and their applications to physics. It
is the purpose of these notes to:

1. Provide a bridge between the very practical formulation of classical differ-
ential geometry created by early masters of the late 1800’s, and the more
elegant but less intuitive modern formulation in terms of manifolds, bun-
dles and differential forms. In particular, the central topic of curvature is
presented in three different but equivalent formalisms.

2. Present the subject of differential geometry with an emphasis on making
the material readable to physicists who may have encountered some of
the concepts in the context of classical or quantum mechanics, but wish
to strengthen the rigor of the mathematics. A source of inspiration for
this goal is rooted in the shock to this author as a graduate student in
the 70’s at Berkeley, at observing the gasping failure of communications
between the particle physicists working on gauge theories and differential
geometers working on connection on fiber bundles. They seemed to be
completely unaware at the time, that they were working on the same
subject.

3. Make the material as readable as possible for those who stand at the
boundary between theoretical physics and applied mathematics. For this
reason, it will be occasionally necessary to sacrifice some mathematical
rigor or depth of physics, in favor of ease of comprehension.

ix



4. Provide the formal geometrical background for the mathematical theory
of general relativity.

5. Introduce examples of other applications of differential geometry to physics
that might not appear in traditional texts used in courses for mathematics
students. For example, several students at UNCW have written masters’
theses in the theory of solitons, but usually they have followed the path
of Lie symmetries in the style of Olver. We hope that the elegance of
Bäcklund transforms will attract students to a geometric approach to the
subject. The book is also a stepping stone to other interconnected ar-
eas of mathematics such as representation theory, complex variables and
algebraic topology.

G. Lugo (2021)



Chapter 1

Vectors and Curves

1.1 Tangent Vectors

1.1.1 Definition Euclidean n-space Rn is defined as the set of ordered n-
tuples p(p1, . . . , pn), where pi ∈ R, for each i = 1, . . . , n. We may associate
a position vector p = (p1, . . . , pn) with any given point a point p in n-space.
Given any two n-tuples p = (p1, . . . , pn), q = (q1, . . . , qn) and any real number
c, we define two operations:

p + q = (p1 + q1, . . . , pn + qn), (1.1)

cp = (c p1, . . . , c pn).

These two operations of vector sum and multiplication by a scalar satisfy all
the 8 properties needed to give the set V = Rn a natural structure of a vector
space. It is common to use the same notation Rn for the space of n-tuples and
for the vector space of position vectors. Technically, we should write p ∈ Rn

when we think of Rn as a metric space and p ∈ Rn when we think of it as
vector space, but as most authors, we will freely abuse the notation. 1

1.1.2 Definition Let xi be the real valued functions in Rn such that

xi(p) = pi

for any point p = (p1, . . . , pn). The functions xi are then called the natural
coordinate functions. When convenient, we revert to the usual names for the
coordinates, x1 = x, x2 = y and x3 = z in R3. A small awkwardness might

1In these notes we will use the following index conventions:

� In Rn, indices such as i, j, k, l,m, n, run from 1 to n.

� In space-time, indices such as µ, ν, ρ, σ, run from 0 to 3.

� On surfaces in R3, indices such as α, β, γ, δ, run from 1 to 2.

� Spinor indices such as A,B, Ȧ, Ḃ run from 1 to 2.

1



2 CHAPTER 1. VECTORS AND CURVES

occur in the transition to modern notation. In classical vector calculus, a point
in Rn is often denoted by x, in which case, we pick up the coordinates with the
slot projection functions ui : Rn → R defined by

ui(x) = xi.

1.1.3 Definition A real valued function in Rn is of class Cr if all the partial
derivatives of the function up to order r exist and are continuous. The space
of infinitely differentiable (smooth) functions will be denoted by C∞(Rn) or
F (Rn).

1.1.4 Definition Let V and V ′ be finite dimensional vector spaces such as
V = Rk and V ′ = Rn, and let L(V, V ′) be the space of linear transformations
from V to V ′. The set of linear functionals L(V,R) is called the dual vector
space V ∗. This space has the same dimension as V .

In calculus, vectors are usually regarded as arrows characterized by a direc-
tion and a length. Thus, vectors are considered as independent of their location
in space. Because of physical and mathematical reasons, it is advantageous to
introduce a notion of vectors that does depend on location. For example, if the
vector is to represent a force acting on a rigid body, then the resulting equations
of motion will obviously depend on the point at which the force is applied. In
later chapters, we will consider vectors on curved spaces; in these cases, the
positions of the vectors are crucial. For instance, a unit vector pointing north
at the earth’s equator is not at all the same as a unit vector pointing north
at the tropic of Capricorn. This example should help motivate the following
definition.

1.1.5 Definition A tangent vector Xp in Rn, is an ordered pair {x,p}. We
may regard x as an ordinary advanced calculus “arrow-vector” and p is the
position vector of the foot of the arrow.

The collection of all tangent vectors at a point p ∈ Rn is called the tangent
space at p and will be denoted by Tp(R

n). Given two tangent vectors Xp, Yp
and a constant c, we can define new tangent vectors at p by (X+Y )p=Xp+Yp
and (cX)p = cXp. With this definition, it is clear that for each point p, the
corresponding tangent space Tp(R

n) at that point has the structure of a vector
space. On the other hand, there is no natural way to add two tangent vectors
at different points.

The set T (Rn) (or simply TRn) consisting of the union of all tangent spaces
at all points in Rn is called the tangent bundle. This object is not a vector space,
but as we will see later it has much more structure than just a set.

1.1.6 Definition A vector field X in U ⊂ Rn is a section of the tangent
bundle, that is, a smooth function from U to T (U). The space of sections
Γ(T (U) is also denoted by X (U).

The difference between a tangent vector and a vector field is that in the
latter case, the coefficients vi of x are smooth functions of xi. Since in general
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Fig. 1.1: Tangent Bundle

there are not enough dimensions to depict a tangent bundle and vector fields
as sections thereof, we use abstract diagrams such as shown Figure 1.1. In such
a picture, the base space M (in this case M = Rn) is compressed into the
continuum at the bottom of the picture in which several points p1, . . . ,pk are
shown. To each such point one attaches a tangent space. Here, the tangent
spaces are just copies of Rn shown as vertical “fibers” in the diagram. The
vector component xp of a tangent vector at the point p is depicted as an arrow
embedded in the fiber. The union of all such fibers constitutes the tangent
bundle TM = TRn. A section of the bundle amounts to assigning a tangent
vector to every point in the base. It is required that such assignment of vectors
is done in a smooth way so that there are no major “changes” of the vector
field between nearby points.

Fig. 1.2: Vector Field

Given any two vector fields X and Y and any
smooth function f , we can define new vector fields
X + Y and fX by

(X + Y )p = Xp + Yp (1.2)

(fX)p = fXp,

so that X (U) has the structure of a vector space
over R. The subscript notation Xp indicating the
location of a tangent vector is sometimes cum-
bersome, but necessary to distinguish them from
vector fields.

Vector fields are essential objects in physical
applications. If we consider the flow of a fluid in
a region, the velocity vector field represents the
speed and direction of the flow of the fluid at that point. Other examples of
vector fields in classical physics are the electric, magnetic, and gravitational
fields. The vector field in figure 1.2 represents a magnetic field around an
electrical wire pointing out of the page.

1.1.7 Definition Let Xp = {x,p} be a tangent vector in an open neighbor-
hood U of a point p ∈ Rn and let f be a C∞ function in U . The directional
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derivative of f at the point p, in the direction of x, is defined by

Xp(f) = ∇f(p) · x, (1.3)

where ∇f(p) is the gradient of the function f at the point p. The notation

Xp(f) ≡ ∇Xpf,

is also commonly used. This notation emphasizes that, in differential geometry,
we may think of a tangent vector at a point as an operator on the space of
smooth functions in a neighborhood of the point. The operator assigns to a
function f , the directional derivative of that function in the direction of the
vector. Here we need not assume as in calculus that the direction vectors have
unit length.

It is easy to generalize the notion of directional derivatives to vector fields
by defining

X(f) ≡ ∇Xf = ∇f · x, (1.4)

where the function f and the components of x depend smoothly on the points
of Rn.

The tangent space at a point p in Rn can be envisioned as another copy of
Rn superimposed at the point p. Thus, at a point p in R2, the tangent space
consist of the point p and a copy of the vector space R2 attached as a “tangent
plane” at the point p. Since the base space is a flat 2-dimensional continuum,
the tangent plane for each point appears indistinguishable from the base space
as in figure 1.2.

Later we will define the tangent space for a curved continuum such as a
surface in R3 as shown in figure 1.3. In this case, the tangent space at a point
p consists of the vector space of all vectors actually tangent to the surface at
the given point.

Fig. 1.3: Tangent vectors Xp, Yp on a surface in R3.

1.1.8 Proposition If f, g ∈ F (Rn), a, b ∈ R, and X ∈ X (Rn) is a vector
field, then

X(af + bg) = aX(f) + bX(g), (1.5)

X(fg) = fX(g) + gX(f).
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1.1.9 Remark The space of smooth functions is a ring, ignoring a small
technicality with domains. An operator such as a vector field with the properties
above, is called a linear derivation on F (Rn).
Proof First, let us develop an mathematical expression for tangent vectors and
vector fields that will facilitate computation.
Let p ∈ U be a point and let xi be the coordinate functions in U . Suppose that
Xp = {x,p}, where the components of the Euclidean vector x are (v1, . . . , vn).
Then, for any function f , the tangent vector Xp operates on f according to the
formula

Xp(f) =

n∑
i=1

vi
(
∂f

∂xi

)
(p). (1.6)

It is therefore natural to identify the tangent vector Xp with the differential
operator

Xp =

n∑
i=1

vi
(

∂

∂xi

)
p

(1.7)

Xp = v1

(
∂

∂x1

)
p

+ · · ·+ vn
(

∂

∂xn

)
p

.

Notation: We will be using Einstein’s convention to suppress the summation
symbol whenever an expression contains a repeated index. Thus, for example,
the equation above could be simply written as

Xp = vi
(

∂

∂xi

)
p

. (1.8)

This equation implies that the action of the vector Xp on the coordinate func-
tions xi yields the components vi of the vector. In elementary treatments,
vectors are often identified with the components of the vector, and this may
cause some confusion.
The operators

{e1, . . . , ek}|p =

{(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

}
form a basis for the tangent space Tp(R

n) at the point p, and any tangent vector
can be written as a linear combination of these basis vectors. The quantities
vi are called the contravariant components of the tangent vector. Thus, for
example, the Euclidean vector in R3

x = 3i + 4j− 3k

located at a point p, would correspond to the tangent vector

Xp = 3

(
∂

∂x

)
p

+ 4

(
∂

∂y

)
p

− 3

(
∂

∂z

)
p

.
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Let X = vi
∂

∂xi
be an arbitrary vector field and let f and g be real-valued

functions. Then

X(af + bg) = vi
∂

∂xi
(af + bg)

= vi
∂

∂xi
(af) + vi

∂

∂xi
(bg)

= avi
∂f

∂xi
+ bvi

∂g

∂xi

= aX(f) + bX(g).

Similarly,

X(fg) = vi
∂

∂xi
(fg)

= vif
∂

∂xi
(g) + vig

∂

∂xi
(f)

= fvi
∂g

∂xi
+ gvi

∂f

∂xi

= fX(g) + gX(f).

To re-emphasize, any quantity in Euclidean space which satisfies relations 1.5
is a called a linear derivation on the space of smooth functions. The word linear
here is used in the usual sense of a linear operator in linear algebra, and the
word derivation means that the operator satisfies Leibnitz’ rule.

The proof of the following proposition is slightly beyond the scope of this
course, but the proposition is important because it characterizes vector fields
in a coordinate-independent manner.

1.1.10 Proposition Any linear derivation on F (Rn) is a vector field.
This result allows us to identify vector fields with linear derivations. This

step is a big departure from the usual concept of a “calculus” vector. To a
differential geometer, a vector is a linear operator whose inputs are functions
and whose output are functions that at each point represent the directional
derivative in the direction of the Euclidean vector.

1.1.11 Example Given the point p(1, 1), the Euclidean vector x = (3, 4),
and the function f(x, y) = x2 + y2, we associate x with the tangent vector

Xp = 3
∂

∂x
+ 4

∂

∂y
.

Then,

Xp(f) = 3

(
∂f

∂x

)
p

+ 4

(
∂f

∂y

)
p

,

= 3(2x)|p + 4(2y)|p,
= 3(2) + 4(2) = 14.
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1.1.12 Example Let f(x, y, z) = xy2z3 and x = (3x, 2y, z). Then

X(f) = 3x

(
∂f

∂x

)
+ 2y

(
∂f

∂y

)
+ z

(
∂f

∂z

)
= 3x(y2z3) + 2y(2xyz3) + z(3xy2z2),

= 3xy2z3 + 4xy2z3 + 3xy2z3 = 10xy2z3.

1.1.13 Definition Let X be a vector field in Rn and p be a point. A curve
α(t) with α(0) = p is called an integral curve of X if α′(0) = Xp, and, whenever
α(t) is the domain of the vector field, α′(t) = Xα(t).

In elementary calculus and differential equations, the families of integral
curves of a vector field are called the streamlines, suggesting the trajectories
of a fluid with velocity vector X. In figure 1.2, the integral curves would be
circles that fit neatly along the flow of the vector field. In local coordinates,
the expression defining integral curves of X constitutes a system of first order
differential equations, so the existence and uniqueness of solutions apply locally.
We will treat this in more detail in subsection 7.1.1

1.2 Differentiable Maps

1.2.1 Definition Let F : Rn → Rm be a vector function defined by coor-
dinate entries F (p) = (f1(p), f2(p), . . . fm(p)). The vector function is called
a mapping if the coordinate functions are all differentiable. If the coordinate
functions are C∞, F is called a smooth mapping. If (x1, x2, . . . xn) are local
coordinates in Rn and (y1, y2, . . . ym) local coordinates in Rm, a map y = F (x)
is represented in advanced calculus by m functions of n variables

yj = f j(xi), i = 1 . . . n, j = 1 . . .m. (1.9)

A map F : Rn → Rm is differentiable at a point p ∈ Rn if there exists a linear
transformation DF (p) : Rn → Rm such that

lim
h→0

|F (p + h)− F (p)−DF (p)(h)|
|h|

= 0 (1.10)

The linear transformation DF (p)is called the Jacobian. A differentiable map
that is invertible and the inverse is differentiable, is called a diffeomorphism.

Remarks

1. A differentiable mapping F : I ∈ R → Rn is what we called a curve. If
t ∈ I = [a, b], the mapping gives a parametrization x(t), as we discussed
in the previous section.

2. A differentiable mapping F : R ∈ Rn → Rn is called a coordinate trans-
formation. Thus, for example, the mapping F : (u, v) ∈ R2 → (x, y) ∈



8 CHAPTER 1. VECTORS AND CURVES

R2, given by functions x = x(u, v), y = y(u, v), would constitute a change
of coordinates from (u, v) to (x, y). The most familiar case is the polar
coordinates transformation x = r cos θ, y = r sin θ.

3. A differentiable mapping F : R ∈ R2 → R3 is what in calculus we
called a parametric surface. Typically, one assumes that R is a simple
closed region, such as a rectangle. If one denotes the coordinates in R2

by (u, v) ∈ R, and x ∈ R3, the parametrization is written as x(u, v) =
(x(u, v), y(u, v), z(u, v)). The treatment of surfaces in R3 is presented in
chapter 4. If R3 is replaced by Rn, the mapping locally represents a
2-dimensional surface in a space of n dimensions.

For each point p ∈ Rn, we say that the Jacobian induces a linear trans-
formation F∗ from the tangent space TpR

n to the tangent space TF (p)R
m. In

differential geometry we this Jacobian map is also called the push-forward. If
we let X be a tangent vector in Rn, then the tangent vector F∗X in Rm is
defined by

F∗X(f) = X(f ◦ F ), (1.11)

where f ∈ F (Rm). (See figure 1.4)

Fig. 1.4: Jacobian Map.

As shown in the diagram, F∗X(f) is evaluated at F (p) whereas X is evalu-
ated at p. So, to be precise, equation 1.11 should really be written as

F∗X(f)(F (p)) = X(f ◦ F )(p), (1.12)

F∗X(f) ◦ F = X(f ◦ F ), (1.13)

As we have learned from linear algebra, to find a matrix representation of a
linear map in a particular basis, one applies the map to the basis vectors. If
we denote by { ∂

∂xi } the basis for the tangent space at a point p ∈ Rn and by

{ ∂
∂yj } the basis for the tangent space at the corresponding point F (p) ∈ Rm

with coordinates given by yj = f j(xi), the push-forward definition reads,

F∗(
∂

∂xi
)(f) =

∂

∂xi
(f ◦ F ),

=
∂f

∂yj
∂yj

∂xi
,

F∗(
∂

∂xi
) =

∂yj

∂xi
∂

∂yj
.
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In other words, the matrix representation of F∗ in standard basis is in fact the
Jacobian matrix. In classical notation, we simply write the Jacobian map in
the familiar form,

∂

∂xi
=
∂yj

∂xi
∂

∂yj
. (1.14)

1.2.2 Theorem If F : Rn → Rm and G : Rm → Rp are mappings, then
(G ◦ F )∗ = G∗ ◦ F∗.
Proof Let X ∈ Tp(R)n, and f be a smooth function f : Rp → R. Then,

(G ◦ F )∗(X)(f) = X(f ◦ (G ◦ F ),

= X((f ◦G) ◦ F ),

= F∗(X)(f ◦G),

= G∗(F∗(X)(f)),

= (G∗ ◦ F∗)(X)(f).

1.2.3 Inverse Function Theorem. When m = n, mappings are called
change of coordinates. In the terminology of tangent spaces, the classical in-
verse function theorem states that if the Jacobian map F∗ is a vector space
isomorphism at a point, then there exists a neighborhood of the point in which
F is a diffeomorphism.

1.2.4 Remarks

1. Equation 1.14 shows that under change of coordinates, basis tangent vec-
tors and by linearity all tangent vectors transform by multiplication by
the matrix representation of the Jacobian. This is the source of the almost
tautological definition in physics, that a contravariant tensor of rank one,
is one that transforms like a contravariant tensor of rank one.

2. Many authors use the notation dF to denote the push-forward map F∗.

3. If F : Rn → Rm and G : Rm → Rp are mappings, we leave it as an
exercise for the reader to verify that the formula (G ◦ F )∗ = G∗ ◦ F∗
for the composition of linear transformations corresponds to the classical
chain rule.

4. As we will see later, the concept of the push-forward extends to manifold
mappings F : M → N .
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1.3 Curves in R3

1.3.1 Parametric Curves

1.3.1 Definition A curve α(t) in R3 is a C∞ map from an interval I ⊂
R into R3. The curve assigns to each value of a parameter t ∈ R, a point
(α1(t), α2(t), α3(t)) ∈ R3.

I ⊂ R
α7−→ R3

t 7−→ α(t) = (α1(t), α2(t), α3(t))

One may think of the parameter t as representing time, and the curve α as
representing the trajectory of a moving point particle as a function of time.
When convenient, we also use classical notation for the position vector

x(t) = (x1(t), x2(t), x3(t)), (1.15)

which is more prevalent in vector calculus and elementary physics textbooks.
Of course, what this notation really means is

xi(t) = (ui ◦ α)(t), (1.16)

where ui are the coordinate slot functions in an open set in R3

1.3.2 Example Let

α(t) = (a1t+ b1, a2t+ b2, a3t+ b3). (1.17)

This equation represents a straight line passing through the point p = (b1, b2, b3),
in the direction of the vector v = (a1, a2, a3).

1.3.3 Example Let

α(t) = (a cosωt, a sinωt, bt). (1.18)

This curve is called a circular helix. Geometrically, we may view the curve as the
path described by the hypotenuse of a triangle with slope b, which is wrapped
around a circular cylinder of radius a. The projection of the helix onto the
xy-plane is a circle and the curve rises at a constant rate in the z-direction
(See Figure 1.5a). Similarly, the equation α(t) = (a coshωt, a sinhωt, bt) is
called a hyperbolic “helix.” It represents the graph of curve that wraps around
a hyperbolic cylinder rising at a constant rate.

1.3.4 Example Let

α(t) = (a(1 + cos t), a sin t, 2a sin(t/2)). (1.19)

This curve is called the Temple of Viviani. Geometrically, this is the curve
of intersection of a sphere x2 + y2 + z2 = 4a2 of radius 2a, and the cylinder
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Fig. 1.5: a) Circular Helix. b) Temple of Viviani

x2 + y2 = 2ax of radius a, with a generator tangent to the diameter of the
sphere along the z-axis (See Figure 1.5b).

The Temple of Viviani is of historical interest in the development of calculus.
The problem was posed anonymously by Viviani to Leibnitz, to determine on
the surface of a semi-sphere, four identical windows, in such a way that the
remaining surface be equivalent to a square. It appears as if Viviani was chal-
lenging the effectiveness of the new methods of calculus against the power of
traditional geometry.

It is said that Leibnitz understood the nature
of the challenge and solved the problem in one
day. Not knowing the proposer of the enigma,
he sent the solution to his Serenity Ferdinando,
as he guessed that the challenge must have orig-
inated from prominent Italian mathematicians.
Upon receipt of the solution by Leibnitz, Viviani
posted a mechanical solution without proof. He
described it as using a boring device to remove
from a semisphere, the surface area cut by two
cylinders with half the radius, and which are tan-
gential to a diameter of the base. Upon realizing this could not physically be
rendered as a temple since the roof surface would rest on only four points,
Viviani no longer spoke of a temple but referred to the shape as a “sail.”

1.3.5 Definition Let α : I → R3 be a curve in R3 given in components as
above α = (α1, α2, α3). For each point t ∈ I we define the velocity or tangent
vector of the curve by

α′(t) =

(
dα1

dt
,
dα2

dt
,
dα3

dt

)
α(t)

. (1.20)

At each point of the curve, the velocity vector is tangent to the curve and thus
the velocity constitutes a vector field representing the velocity flow along that
curve. In a similar manner the second derivative α′′(t) is a vector field called
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the acceleration along the curve. The length v = ‖α′(t)‖ of the velocity vector
is called the speed of the curve. The classical components of the velocity vector
are simply given by

v(t) = ẋ ≡ dx

dt
=

(
dx1

dt
,
dx2

dt
,
dx3

dt

)
, (1.21)

and the speed is

v =

√(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

. (1.22)

The notation T (t) or Tα(t) is also used for the tangent vector α′(t), but for now,
we reserve T (t) for the unit tangent vector to be introduced in section 1.3.3 on
Frenet frames.

As is well known, the vector form of the equa-
tion of the line 1.17 can be written as x(t) =
p + tv, which is consistent with the Euclidean
axiom stating that given a point and a direction,
there is only one line passing through that point
in that direction. In this case, the velocity ẋ = v
is constant and hence the acceleration ẍ = 0.
This is as one would expect from Newton’s law
of inertia.

The differential dx of the position vector given by

dx = (dx1, dx2, dx3) =

(
dx1

dt
,
dx2

dt
,
dx3

dt

)
dt (1.23)

which appears in line integrals in advanced calculus is some sort of an infinitesi-
mal tangent vector. The norm ‖dx‖ of this infinitesimal tangent vector is called
the differential of arc length ds. Clearly, we have

ds = ‖dx‖ = v dt. (1.24)

If one identifies the parameter t as time in some given units, what this says
is that for a particle moving along a curve, the speed is the rate of change of
the arc length with respect to time. This is intuitively exactly what one would
expect.

The notion of infinitesimal objects needs to be treated in a more rigorous
mathematical setting. At the same time, we must not discard the great intuitive
value of this notion as envisioned by the masters who invented calculus, even
at the risk of some possible confusion! Thus, whereas in the more strict sense
of modern differential geometry, the velocity is a tangent vector and hence it
is a differential operator on the space of functions, the quantity dx can be
viewed as a traditional vector which, at the infinitesimal level, represents a
linear approximation to the curve and points tangentially in the direction of v.
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1.3.2 Velocity

For any smooth function f : R3 → R , we formally define the action of the
velocity vector field α′(t) as a linear derivation by the formula

α′(t)(f) |α(t)=
d

dt
(f ◦ α) |t . (1.25)

The modern notation is more precise, since it takes into account that the veloc-
ity has a vector part as well as point of application. Given a point on the curve,
the velocity of the curve acting on a function, yields the directional derivative
of that function in the direction tangential to the curve at the point in question.
The diagram in figure 1.6 below provides a more visual interpretation of the
velocity vector formula 1.25, as a linear mapping between tangent spaces.

Fig. 1.6: Velocity Vector Operator

The map α(t) from R to R3 induces a push-forward map α∗ from the
tangent space of R to the tangent space of R3 . The image α∗(

d
dt ) in TR3 of

the tangent vector d
dt is what we call α′(t).

α∗(d/dt) = α′(t).

Since α′(t) is a tangent vector in R3, it acts on functions in R3 . The action of
α′(t) on a function f on R3 is the same as the action of d/dt on the composition
(f ◦ α). In particular, if we apply α′(t) to the coordinate functions xi, we get
the components of the tangent vector

α′(t)(xi) |α(t)=
d

dt
(xi ◦ α)|t. (1.26)

To unpack the above discussion in the simplest possible terms, we associate
with the classical velocity vector v = ẋ a linear derivation α′(t) given by

α′(t) =
d

dt
(xi ◦ α)t(∂/∂x

i)α(t),

=
dx1

dt

∂

∂x1
+
dx2

dt

∂

∂x2
+
dx3

dt

∂

∂x3
. (1.27)

So, given a real valued function f in R3, the action of the velocity vector is
given by the chain rule

α′(t)(f) =
∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
+

∂f

∂x3

dx3

dt
= ∇f · v.
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If α(t) is a curve in Rn with tangent vector X = α′(t), and F : Rn → Rm

is differentiable map, then F∗X is a tangent vector to the curve F ◦ α in Rm.
That is, F∗ maps tangent vectors of α to tangent vectors of F ◦ α.

1.3.6 Definition If t = t(s) is a smooth, real valued function and α(t) is a
curve in R3 , we say that the curve β(s) = α(t(s)) is a reparametrization of α.

A common reparametrization of curve is obtained by using the arc length
as the parameter. Using this reparametrization is quite natural, since we know
from basic physics that the rate of change of the arc length is what we call
speed

v =
ds

dt
= ‖α′(t)‖. (1.28)

The arc length is obtained by integrating the above formula

s =

∫
‖α′(t)‖ dt =

∫ √(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

dt (1.29)

In practice, it is typically difficult to find an explicit arc length parametrization
of a curve since not only does one have to calculate the integral, but also one
needs to be able to find the inverse function t in terms of s. On the other hand,
from a theoretical point of view, arc length parameterizations are ideal, since
any curve so parametrized has unit speed. The proof of this fact is a simple
application of the chain rule and the inverse function theorem.

β′(s) = [α(t(s))]′

= α′(t(s))t′(s)

= α′(t(s))
1

s′(t(s))

=
α′(t(s))

‖α′(t(s))‖
,

and any vector divided by its length is a unit vector. Leibnitz notation makes
this even more self-evident

dx

ds
=

dx

dt

dt

ds
=

dx
dt
ds
dt

=
dx
dt

‖dxdt ‖

1.3.7 Example Let α(t) = (a cosωt, a sinωt, bt). Then

v(t) = (−aω sinωt, aω cosωt, b),



1.3. CURVES IN R3 15

s(t) =

∫ t

0

√
(−aω sinωu)2 + (aω cosωu)2 + b2 du

=

∫ t

0

√
a2ω2 + b2 du

= ct, where, c =
√
a2ω2 + b2.

The helix of unit speed is then given by

β(s) = (a cos
ωs

c
, a sin

ωs

c
, b
ωs

c
).

1.3.3 Frenet Frames

Let β(s) be a curve parametrized by arc length and let T (s) be the vector

T (s) = β′(s). (1.30)

The vector T (s) is tangential to the curve and it has unit length. Hereafter, we
will call T the unit tangent vector. Differentiating the relation

T · T = 1, (1.31)

we get

2 T · T ′ = 0, (1.32)

so we conclude that the vector T ′ is orthogonal to T . Let N be a unit vector
orthogonal to T , and let κ be the scalar such that

T ′(s) = κN(s). (1.33)

We call N the unit normal to the curve, and κ the curvature. Taking the length
of both sides of last equation, and recalling that N has unit length, we deduce
that

κ = ‖T ′(s)‖. (1.34)

It makes sense to call κ the curvature because, if T is a unit vector, then T ′(s)
is not zero only if the direction of T is changing. The rate of change of the
direction of the tangent vector is precisely what one would expect to measure
how much a curve is curving. We now introduce a third vector

B = T ×N, (1.35)

which we will call the binormal vector. The triplet of vectors (T,N,B) forms
an orthonormal set; that is,

T · T = N ·N = B ·B = 1,

T ·N = T ·B = N ·B = 0. (1.36)
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If we differentiate the relation B · B = 1, we find that B · B′ = 0, hence B′ is
orthogonal to B. Furthermore, differentiating the equation T ·B = 0, we get

B′ · T +B · T ′ = 0.

rewriting the last equation

B′ · T = −T ′ ·B = −κN ·B = 0,

we also conclude that B′ must also be orthogonal to T . This can only happen
if B′ is orthogonal to the TB-plane, so B′ must be proportional to N . In other
words, we must have

B′(s) = −τN(s), (1.37)

for some quantity τ , which we will call the torsion. The torsion is similar to
the curvature in the sense that it measures the rate of change of the binormal.
Since the binormal also has unit length, the only way one can have a non-zero
derivative is if B is changing directions. This means that if in addition B did
not change directions, the vector would truly be a constant vector, so the curve
would be a flat curve embedded into the TN -plane.

Fig. 1.7: Frenet Frame.

The quantity B′ then measures the rate of
change in the up and down direction of an ob-
server moving with the curve always facing for-
ward in the direction of the tangent vector. The
binormal B is something like the flag in the back
of sand dune buggy.

The set of basis vectors {T,N,B} is called
the Frenet frame or the repère mobile (moving
frame). The advantage of this basis over the fixed
{i, j,k} basis is that the Frenet frame is naturally
adapted to the curve. It propagates along the
curve with the tangent vector always pointing in the direction of motion, and
the normal and binormal vectors pointing in the directions in which the curve
is tending to curve. In particular, a complete description of how the curve is
curving can be obtained by calculating the rate of change of the frame in terms
of the frame itself.

1.3.8 Theorem Let β(s) be a unit speed curve with curvature κ and torsion
τ . Then

T ′ = κN
N ′ = −κT τB
B′ = −τN

. (1.38)

Proof We need only establish the equation for N ′. Differentiating the equation
N ·N = 1, we get 2N ·N ′ = 0, so N ′ is orthogonal to N. Hence, N ′ must be a
linear combination of T and B.

N ′ = aT + bB.
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Taking the dot product of last equation with T and B respectively, we see that

a = N ′ · T, and b = N ′ ·B.

On the other hand, differentiating the equations N · T = 0, and N ·B = 0, we
find that

N ′ · T = −N · T ′ = −N · (κN) = −κ
N ′ ·B = −N ·B′ = −N · (−τN) = τ.

We conclude that a = −κ, b = τ , and thus

N ′ = −κT + τB.

The Frenet frame equations (1.38) can also be written in matrix form as shown
below.  T

N
B

′ =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 . (1.39)

The group-theoretic significance of this matrix formulation is quite important
and we will come back to this later when we talk about general orthonormal
frames. Presently, perhaps it suffices to point out that the appearance of an
antisymmetric matrix in the Frenet equations is not at all coincidental.

The following theorem provides a computational method to calculate the
curvature and torsion directly from the equation of a given unit speed curve.

1.3.9 Proposition Let β(s) be a unit speed curve with curvature κ > 0 and
torsion τ . Then

κ = ‖β′′(s)‖

τ =
β′ · [β′′ × β′′′]

β′′ · β′′
(1.40)

Proof If β(s) is a unit speed curve, we have β′(s) = T . Then

T ′ = β′′(s) = κN,

β′′ · β′′ = (κN) · (κN),

β′′ · β′′ = κ2

κ2 = ‖β′′‖2

β′′′(s) = κ′N + κN ′

= κ′N + κ(−κT + τB)

= κ′N +−κ2T + κτB.
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β′ · [β′′ × β′′′] = T · [κN × (κ′N +−κ2T + κτB)]

= T · [κ3B + κ2τT ]

= κ2τ

τ =
β′ · [β′′ × β′′′]

κ2

=
β′ · [β′′ × β′′′]

β′′ · β′′

1.3.10 Example Consider a circle of radius r whose equation is given by

α(t) = (r cos t, r sin t, 0).

Then,

α′(t) = (−r sin t, r cos t, 0)

‖α′(t)‖ =
√

(−r sin t)2 + (r cos t)2 + 02

=

√
r2(sin2 t+ cos2 t)

= r.

Therefore, ds/dt = r and s = rt, which we recognize as the formula for the
length of an arc of circle of radius r, subtended by a central angle whose measure
is t radians. We conclude that

β(s) = (r cos
s

r
, r sin

s

r
, 0)

is a unit speed reparametrization. The curvature of the circle can now be easily
computed

T = β′(s) = (− sin
s

r
, cos

s

r
, 0),

T ′ = (−1

r
cos

s

r
,−1

r
sin

s

r
, 0),

κ = ‖β′′‖ = ‖T ′‖,

=

√
1

r2
cos2

s

r
+

1

r2
sin2 s

r
+ 02,

=

√
1

r2
(cos2

s

r
+ sin2 s

r
),

=
1

r
.

This is a very simple but important example. The fact that for a circle of radius
r the curvature is κ = 1/r could not be more intuitive. A small circle has large
curvature and a large circle has small curvature. As the radius of the circle
approaches infinity, the circle locally looks more and more like a straight line,
and the curvature approaches 0. If one were walking along a great circle on a
very large sphere (like the earth) one would be perceive the space to be locally
flat.
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Fig. 1.8: Osculating Circle

1.3.11 Proposition Let α(t) be a curve of
velocity v, acceleration a, speed v and curva-
ture κ, then

v = vT,

a =
dv

dt
T + v2κN. (1.41)

Proof Let s(t) be the arc length and let
β(s) be a unit speed reparametrization. Then
α(t) = β(s(t)) and by the chain rule

v = α′(t),

= β′(s(t))s′(t),

= vT.

a = α′′(t),

=
dv

dt
T + vT ′(s(t))s′(t),

=
dv

dt
T + v(κN)v,

=
dv

dt
T + v2κN.

Equation 1.41 is important in physics. The equation states that a particle
moving along a curve in space feels a component of acceleration along the
direction of motion whenever there is a change of speed, and a centripetal
acceleration in the direction of the normal whenever it changes direction. The
centripetal Acceleration and any point is

a = v2κ =
v2

r

where r is the radius of a circle called the osculating circle.
The osculating circle has maximal tangential contact with the curve at the

point in question. This is called contact of order 2, in the sense that the circle
passes through two nearby in the curve. The osculating circle can be envisioned
by a limiting process similar to that of the tangent to a curve in differential
calculus. Let p be point on the curve, and let q1 and q2 be two nearby points. If
the three points are not collinear, they uniquely determine a circle. The center
of this circle is located at the intersection of the perpendicular bisectors of the
segments joining two consecutive points. This circle is a “secant” approximation
to the tangent circle. As the points q1 and q2 approach the point p, the “secant”
circle approaches the osculating circle. The osculating circle, as shown in figure
1.8, always lies in the TN -plane, which by analogy is called the osculating
plane. If T ′ = 0, then κ = 0 and the osculating circle degenerates into a circle
of infinite radius, that is, a straight line. The physics interpretation of equation
1.41 is that as a particle moves along a curve, in some sense at an infinitesimal
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level, it is moving tangential to a circle, and hence, the centripetal acceleration
at each point coincides with the centripetal acceleration along the osculating
circle. As the points move along, the osculating circles move along with them,
changing their radii appropriately.

1.3.12 Example (Helix)

β(s) = (a cos
ωs

c
, a sin

ωs

c
,
bs

c
), where c =

√
a2ω2 + b2,

β′(s) = (−aω
c

sin
ωs

c
,
aω

c
cos

ωs

c
,
b

c
),

β′′(s) = (−aω
2

c2
cos

ωs

c
,−aω

2

c2
sin

ωs

c
, 0),

β′′′(s) = (
aω3

c3
sin

ωs

c
,−aω

3

c3
cos

ωs

c
, 0),

κ2 = β′′ · β′′,

=
a2ω4

c4
,

κ = ±aω
2

c2
.

τ =
(β′β′′β′′′)

β′′ · β′′
,

=
b

c

[
−aω

2

c2 cos ωsc −aω
2

c2 sin ωs
c ,

aω3

c2 sin ωs
c −aω

3

c2 cos ωsc

]
c4

a2ω4
,

=
b

c

a2ω5

c5
c4

a2ω4
.

Simplifying the last expression and substituting the value of c, we get

τ =
bω

a2ω2 + b2
,

κ = ± aω2

a2ω2 + b2
.

Notice that if b = 0, the helix collapses to a circle in the xy-plane. In this case,
the formulas above reduce to κ = 1/a and τ = 0. The ratio κ/τ = aω/b is
particularly simple. Any curve for which κ/τ = constant, is called a helix; the
circular helix is a special case.
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1.3.13 Example (Plane curves) Let α(t) = (x(t), y(t), 0). Then

α′ = (x′, y′, 0),

α′′ = (x′′, y′′, 0),

α′′′ = (x′′′, y′′′, 0),

κ =
‖α′ × α′′‖
‖α′‖3

,

=
| x′y′′ − y′x′′ |
(x′2 + y′2)3/2

.

τ = 0.

1.3.14 Example Let β(s) = (x(s), y(s), 0), where

x(s) =

∫ s

0

cos
t2

2c2
dt,

y(s) =

∫ s

0

sin
t2

2c2
dt. (1.42)

Then, using the fundamental theorem of calculus, we have

β′(s) = (cos
s2

2c2
, sin

s2

2c2
, 0),

Since ‖β′‖ = v = 1, the curve is of unit speed, and s is indeed the arc length.
The curvature is given by

κ = ‖x′y′′ − y′x′′‖ = (β′ · β′)1/2,

= ‖ − s

c2
sin

s2

2c2
,
s

c2
cos

s2

2c2
, 0‖,

=
s

c2
.

The functions (1.42) are the classical Fresnel integrals which we will discuss in
more detail in the next section.

In cases where the given curve α(t) is not of unit speed, the following propo-
sition provides formulas to compute the curvature and torsion in terms of α.

1.3.15 Proposition If α(t) is a regular curve in R3 , then

κ2 =
‖α′ × α′′‖2

‖α′‖6
, (1.43)

τ =
(α′α′′α′′′)

‖α′ × α′′‖2
, (1.44)

where (α′α′′α′′′) is the triple vector product [α′ × α′′] · α′′′.
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Proof

α′ = vT,

α′′ = v′T + v2κN,

α′′′ = (v2κ)N ′ + . . . ,

= v3κN ′ + . . . ,

= v3κτB + . . . .

As the computation below shows, the other terms in α′′′ are unimportant here
because α′ × α′′ is proportional to B, so all we need is the B component to
solve for τ .

α′ × α′′ = v3κ(T ×N) = v3κB,

‖α′ × α′′‖ = v3κ,

κ =
‖α′ × α′′‖

v3
.

(α′ × α′′) · α′′′ = v6κ2τ,

τ =
(α′α′′α′′′)

v6κ2
,

=
(α′α′′α′′′)

‖α′ × α′′‖2
.

1.4 Fundamental Theorem of Curves

The fundamental theorem of curves basically states that prescribing a cur-
vature and torsion as functions of some parameter s, completely determines up
to position and orientation, a curve β(s) with that given curvature and torsion.
Some geometrical insight into the significance of the curvature and torsion can
be gained by considering the Taylor series expansion of an arbitrary unit speed
curve β(s) about s = 0.

β(s) = β(0) + β′(0)s+
β′′(0)

2!
s2 +

β′′′(0)

3!
s3 + . . . (1.45)

Since we are assuming that s is an arc length parameter,

β′(0) = T (0) = T0

β′′(0) = (κN)(0) = κ0N0

β′′′(0) = (−κ2T + κ′N + κτB)(0) = −κ2
0T0 + κ′0N0 + κ0τ0B0

Keeping only the lowest terms in the components of T , N , and B, we get the
first order Frenet approximation to the curve

β(s)
.
= β(0) + T0s+

1

2
κ0N0s

2 +
1

6
κ0τ0B0s

3. (1.46)
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The first two terms represent the linear approximation to the curve. The first
three terms approximate the curve by a parabola which lies in the osculating
plane (TN -plane). If κ0 = 0, then locally the curve looks like a straight line.
If τ0 = 0, then locally the curve is a plane curve contained on the osculating
plane. In this sense, the curvature measures the deviation of the curve from
a straight line and the torsion (also called the second curvature) measures the
deviation of the curve from a plane curve. As shown in figure 1.9 a non-planar
space curve locally looks like a wire that has first been bent into a parabolic
shape in the TN and twisted into a cubic along the B axis. So suppose that p

Fig. 1.9: Cubic Approximation to a Curve

is an arbitrary point on a curve β(s) parametrized by arc length. We position
the curve so that p is at the origin so that β(0) = 0 coincides with the point
p. We chose the orthonormal basis vectors {e1, e2, e3} in R3 to coincide with
the Frenet Frame T0, N0, B0 at that point. then, the equation (1.46) provides
a canonical representation of the curve near that point. This then constitutes
a proof of the fundamental theorem of curves under the assumption the curve,
curvature and torsion are analytic. (One could also treat the Frenet formulas
as a system of differential equations and apply the conditions of existence and
uniqueness of solutions for such systems.)

1.4.1 Proposition A curve with κ = 0 is part of a straight line.

If κ = 0 then β(s) = β(0) + sT0.

1.4.2 Proposition A curve α(t) with τ = 0 is a plane curve.

Proof If τ = 0, then (α′α′′α′′′) = 0. This means that the three vectors α′, α′′,
and α′′′ are linearly dependent and hence there exist functions a1(s),a2(s) and
a3(s) such that

a3α
′′′ + a2α

′′ + a1α
′ = 0.
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This linear homogeneous equation will have a solution of the form

α = c1α1 + c2α2 + c3, ci = constant vectors.

This curve lies in the plane

(x− c3) · n = 0, where n = c1 × c2

A consequence of the Frenet Equations is that given two curves in space C
and C∗ such that κ(s) = κ∗(s) and τ(s) = τ ∗ (s), the two curves are the same
up to their position in space. To clarify what we mean by their ”position” we
need to review some basic concepts of linear algebra leading to the notion of
isometries.

1.4.1 Isometries

1.4.3 Definition Let x and y be two column vectors in Rn and let xT

represent the transposed row vector. To keep track on whether a vector is
a row vector or a column vector, hereafter we write the components {xi} of a
column vector with the indices up and the components {xi} of a row vector with
the indices down. Similarly, if A is an n × n matrix, we write its components
as A = (aij). The standard inner product is given by matrix multiplication of
the row and column vectors

< x,y > = xTy, (1.47)

=< y,x > . (1.48)

The inner product gives Rn the structure of a normed space by defining ‖x‖ =<
x,x >1/2 and the structure of a metric space in which d(x,y) = ‖x− y‖. The
real inner product is bilinear (linear in each slot), from which it follows that

‖x± y‖2 = ‖x‖2 ± 2 < x,y > +‖y‖2. (1.49)

Thus, we have the polarization identity

< x,y >= 1
4‖x + y‖2 − 1

4‖x− y‖2. (1.50)

The Euclidean inner product satisfies the relation

< x,y >= ‖x‖ · ‖y‖ cos θ, (1.51)

where θ is the angle subtended by the two vectors.

Two vectors x and y are called orthogonal if < x,y >= 0, and a set of
basis vectors B = {e1, . . . en} is called an orthonormal basis if < ei, ej >= δij .
Given an orthonormal basis, the dual basis is the set of linear functionals {αi}
such that αi(ej) = δij . In terms of basis components, column vectors are given



1.4. FUNDAMENTAL THEOREM OF CURVES 25

by x = xiei, row vectors by xT = xjα
j , and the inner product

< x,y > = xTy,

= (xiα
i)(yjej),

= (xiy
j)αi(ej) = (xiy

j)δij .

= xiy
i,

=
[
x1 x2... xn

] 
y1

y2

...
yn


Since | cos θ| ≤ 1, it follows from equation 1.51, a special case of the Schwarz

inequality

| < x,y > | ≤ ‖x‖ · ‖y‖. (1.52)

Let F be a linear transformation from Rn to Rn and B = {e1, . . . en} be an
orthonormal basis. Then, there exists a matrix A = [F ]B given by

A = (aij) = αi(F (ej)), (1.53)

or in terms of the inner product,

A = (aij) =< ei, F (ej) > . (1.54)

On the other hand, if A is a fixed n× n matrix, the map F defined by F (x) =
Ax is a linear transformation from Rn to Rn whose matrix representation
in the standard basis is the matrix A itself. It follows that given a linear
transformation represented by a matrix A, we have

< x, Ay > = xTAy, (1.55)

= (ATx)Ty,

=< ATx,y > . (1.56)

1.4.4 Definition A real n×n matrix A is called orthogonal if ATA = AAT =
I. The linear transformation represented by A is called an orthogonal transfor-
mation. Equivalently, the transformation represented by A is orthogonal if

< x, Ay >=< A−1x,y > . (1.57)

Thus, real orthogonal transformations are represented by symmetric matrices
(Hermitian in the complex case) and the condition ATA = I implies that
det(A) = ±1.

1.4.5 Theorem If A is an orthogonal matrix, then the transformation de-
termined by A preserves the inner product and the norm.
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Proof

< Ax, Ay > =< ATAx,y >,

=< x,y > .

Furthermore, setting y = x:

< Ax, Ax > =< x,x >,

‖Ax‖2 = ‖x‖2,
‖Ax‖ = ‖x‖.

As a corollary, if {ei} is an orthonormal basis, then so is {fi = Aei}. That is,
an orthogonal transformation represents a rotation if detA = 1 and a rotation
with a reflection if detA = −1.

1.4.6 Definition A mapping F : Rn → Rn called an isometry if it preserves
distances. That is, if for all x,y

d(F (x), F (y)) = d(x,y). (1.58)

1.4.7 Example (Translations) Let q be fixed vector. The map F (x) =
x + q is called a translation. It is clearly an isometry since ‖F (x) − F (y)‖ =
‖x + p− (y + p)‖ = ‖x− y‖.

1.4.8 Theorem An orthogonal transformation is an isometry.

Proof Let F be an isometry represented by an orthogonal matrix A. Then,
since the transformation is linear and preserves norms, we have:

d(F (x), F (x)) = ‖Ax−Ay‖,
= ‖A(x− y)‖,
= ‖x− y‖

The composition of two isometries is also an isometry. The inverse of a
translation by q is a translation by −q. The inverse of an orthogonal transfor-
mation represented by A is an orthogonal transformation represented by A−1.
Consequently, the set of isometries consisting of translations and orthogonal
transformations constitutes a group. Given a general isometry, we can use a
translation to insure that F (0) = 0. We now prove the following theorem.

1.4.9 Theorem If F is an isometry such that F (0) = 0, then F is an
orthogonal transformation.

Proof We need to prove that F preserves the inner product and that it is
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linear. We first show that F preserves norms. In fact

‖F (x)‖ = d(F (x),0),

= d(F (x), F (0),

= d(x,0),

= ‖x− 0‖,
= ‖x‖.

Now, using 1.49 and the norm preserving property above, we have:

d(F (x), F (y)) = d(x,y),

‖F (x)− F (y)‖2 = ‖x− y‖2,
‖F (x)‖2 − 2 < F (x), F (y) > +‖F (y)‖2 = ‖x‖2 − 2 < x,y > +‖y‖2.

< F (x), F (y) > =< x,y > .

To show F is linear, let ei be an orthonormal basis, which implies that fi = F (ei)
is also an orthonormal basis. Then

F (ax + by) =

n∑
i=1

< F (ax + by, fi > fi,

=

n∑
i=1

< F (ax + by), F (ei) > fi,

=

n∑
i=1

< (ax + by), ei > fi,

= a

n∑
i=1

< x, ei > fi + b

n∑
i=1

< y, ei > fi,

= a

n∑
i=1

< F (x), fi > fi + b

n∑
i=1

< F (y), fi > fi,

= aF (x) + bF (y).

1.4.10 Theorem If F : Rn → Rn is an isometry then

F (x) = Ax + q, (1.59)

where A is orthogonal.
Proof If F (0 = q, then F̃ = F − q is an isometry with F̃ (0) = 0 and hence

by the previous theorem F̃ is an orthogonal transformation represented by an
orthogonal matrix F̃x = Ax. It follows that F (x) = Ax + q.

We have just shown that any isometry is the composition of translation and
an orthogonal transformation. The latter is the linear part of the isometry.
The orthogonal transformation preserves the inner product, lengths, and maps
orthonormal bases to orthonormal bases.
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1.4.11 Theorem If α is a curve in Rn and β is the image of α under a
mapping F , then vectors tangent to α get mapped to tangent vectors to β.
Proof Let β = F ◦ α. The proof follows trivially from the properties of the
Jacobian map β∗ = (F ◦ α)∗ = F∗α∗ that takes tangent vectors to tangent
vectors. If in addition F is an isometry, then F∗ maps the Frenet frame of α to
the Frenet frame of β.

We now have all the ingredients to prove the following:

1.4.12 Theorem (Fundamental theorem of curves) If C and C̃ are space
curves such that κ(s) = κ̃(s), and τ(s) = τ̃(s) for all s, the curves are isometric.
Proof Given two such curves, we can perform a translation so that, for some
s = s0, the corresponding points on C and C̃ are made to coincide. Without
loss of generality, we can make this point be the origin. Now we perform an
orthogonal transformation to make the Frenet frame {T0, N0, B0} of C coincide
with the Frenet frame {T̃0, Ñ0, B̃0} of C̃. By Schwarz inequality, the inner
product of two unit vectors is also a unit vector, if and only if the vectors are
equal. With this in mind, let

L = T · T̃ +N · Ñ +B · B̃.

A simple computation using the Frenet equations shows that L′ = 0, so L =
constant. But at s = 0 the Frenet frames of the two curves coincide, so the
constant is 3 and this can only happen if for all s, T = T̃ , N = Ñ , B = B̃.
Finally, since T = T̃ , we have β′(s) = β̃′(s), so β(s) = β̃(s)+ constant. But
since β(0) = β̃(0), the constant is 0 and β(s) = β̃(s) for all s.

1.4.2 Natural Equations

The fundamental theorem of curves states that up to an isometry, that is
up to location and orientation, a curve is completely determined by the curva-
ture and torsion. However, the formulas for computing κ and τ are sufficiently
complicated that solving the Frenet system of differential equations could be a
daunting task indeed. With the invention of modern computers, obtaining and
plotting numerical solutions is a routine matter. There is a plethora of differ-
ential equations solvers available nowadays, including the solvers built-in into
Maple, Mathematica, and Matlab. For plane curves, which are characterized

Fig. 1.10: Tangent

by τ = 0, it is possible to find an integral formula for the curve coordinates in
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terms of the curvature. Given a curve parametrized by arc length, consider an
arbitrary point with position vector x = (x, y) on the curve, and let ϕ be the
angle that the tangent vector T makes with the horizontal, as shown in figure
1.10. Then, the Euclidean vector components of the unit tangent vector are
given by

dx

ds
= T = (cosϕ, sinϕ).

This means that
dx

ds
= cosϕ, and

dy

ds
= sinϕ.

From the first Frenet equation we also have

dT

ds
= (− sinϕ

dϕ

ds
, cosϕ

dϕ

ds
) = κN,

so that, ∥∥∥∥dTds
∥∥∥∥ =

dϕ

ds
= κ.

We conclude that

x(s) =

∫
cosϕ ds, y(s) =

∫
sinϕ ds,where, ϕ =

∫
κ ds. (1.60)

Equations 1.60 are called the natural equations of a plane curve. Given the
curvature κ, the equation of the curve can be obtained by “quadratures,” the
classical term for integrals.

1.4.13 Example Circle: κ = 1/R
The simplest natural equation is one where the curvature is constant. For
obvious geometrical reasons we choose this constant to be 1/R. Then, ϕ = s/R
and

x = (R sin
s

R
,−R cos

s

R
),

which is the equation of a unit speed circle of radius R.

1.4.14 Example Cornu spiral: κ = πs
This is the most basic linear natural equation, except for the scaling factor of
π which is inserted for historical conventions. Then ϕ = 1

2πs
2, and

x(s) = C(s) =

∫
cos( 1

2πs
2) ds; y(s) = S(s) =

∫
sin( 1

2πs
2) ds. (1.61)

The functions C(s) and S(s) are called Fresnel Integrals. In the standard clas-
sical function libraries of Maple and Mathematica, they are listed as FresnelC
and FresnelS respectively. The fast-increasing frequency of oscillations of the
integrands here make the computation prohibitive without the use of high-speed
computers. Graphing calculators are inadequate to render the rapid oscillations
for s ranging from 0 to 15, for example, and simple computer programs for the
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Fig. 1.11: Fresnel Diffraction

trapezoidal rule as taught in typical calculus courses, completely fall apart in
this range. The Cornu spiral is the curve x(s) = (x(s), y(s)) parametrized by
Fresnel integrals (See figure 1.11a). It is a tribute to the mathematicians of
the 1800’s that not only were they able to compute the values of the Fresnel
integrals to 4 or 5 decimal places, but they did it for the range of s from 0 to
15 as mentioned above, producing remarkably accurate renditions of the spiral.
Fresnel integrals appear in the study of diffraction. If a coherent beam of light
such as a laser beam, hits a sharp straight edge and a screen is placed behind,
there will appear on the screen a pattern of diffraction fringes. The amplitude
and intensity of the diffraction pattern can be obtained by a geometrical con-
struction involving the Fresnel integrals. First consider the function Ψ(s) = ‖x‖
that measures the distance from the origin to the points in the Cornu spiral in
the first quadrant. The square of this function is then proportional to the in-
tensity of the diffraction pattern, The graph of |Ψ(s)|2 is shown in figure 1.11b.
Translating this curve along an axis coinciding with that of the straight edge,
generates a three dimensional surface as shown from ”above” in figure 1.11c. A
color scheme was used here to depict a model of the Fresnel diffraction by the
straight edge.

1.4.15 Example Logarithmic Spiral κ = 1/(as+ b)
A logarithmic spiral is a curve in which the position vector x makes a constant
angle with the tangent vector, as shown in figure 1.12. A formula for the curve
can be found easily if one uses the calculus formula in polar coordinates

tanψ =
r

dr/dθ
. (1.62)

Here, ψ is the angle between the polar direction and the tangent. If ψ is con-
stant, then one can immediately integrate the equation to get the exponential
function below, in which k is the constant of integration

r(θ) = ke(cotψ)θ (1.63)

Derivation of formula 1.62 has fallen through the cracks in standard fat cal-
culus textbooks, at best relegated to an advanced exercise which most students
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Fig. 1.12: Logarithmic Spiral

will not do. Perhaps the reason is that the section on polar coordinates is typi-
cally covered in Calculus II, so students have not yet been exposed to the tools
of vector calculus that facilitate the otherwise messy computation. To fill-in
this gap, we present a short derivation of this neat formula. For a plane curve
in parametric polar coordinates, we have

x(t) = (r(t) cos θ(t), r(t) sin θ(t)),

ẋ = (ṙ cos θ − r sin θ θ̇, ṙ sin θ + r cos θ θ̇).

A direct computation of the dot product gives,

| < x, ẋ > |2 = (rṙ)2.

On the other hand,

| < x, ẋ > |2 = ‖x‖2 ‖ẋ‖2 cos2 ψ,

= r2(ṙ2 + r2θ̇2) cos2 ψ.

Equating the two, we find,

ṙ2 = (ṙ2 + r2θ̇2) cos2 ψ,

(sin2 ψ)ṙ2 = r2θ̇2 cos2 ψ,

(sinψ) dr = r cosψ dθ,

tanψ =
r

dr/dθ
.

We leave it to the reader to do a direct computation of the curvature. Instead,
we prove that if κ = 1/(as + b), where a and b are constant, then the curve is
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a logarithmic spiral. From the natural equations, we have,

dθ

ds
= κ =

1

as+ b
,

θ =
1

a
ln(as+ b) + C, C = const,

eaθ = B(as+ b), B = eaC = 1/A,

1

κ
= Aeaθ =

ds

dθ
,

ds = Aeas dθ.

Back to the natural equations, the x and y coordinates are obtained by inte-
grating,

x =

∫
Aeaθ cos θ dθ,

y =

∫
Aeaθ sin θ dθ.

We can avoid the integrations by parts by letting z = x+ iy = reiθ. We get

z = A

∫
eaθeiθ dθ,

= A

∫
e(a+i)θ dθ,

=
A

a+ i
e(a+i)θ,

=
A

a+ i
eaθeiθ.

Extracting the real part ‖z‖ = r, we get

r =
A√
a2 + 1

eaθ, (1.64)

which is the equation of a logarithmic spiral with a = cotψ. As shown in figure
1.12, families of concentric logarithmic spirals are ubiquitous in nature as in
flowers and pine cones, in architectural designs. The projection of a conical
helix as in figure 4.8 onto the plane through the origin, is a logarithmic spiral.
The analog of a logarithmic spiral on a sphere is called a loxodrome as depicted
in figure 4.2.

1.4.16 Example Meandering Curves: κ = sin s
A whole family of meandering curves are obtained by letting κ = A sin ks.

The meandering graph shown in picture 1.13 was obtained by numerical inte-
gration for A = 2 and “wave number” k = 1. The larger the value of A the
larger the curvature of the “throats.” If A is large enough, the “throats” will
overlap.
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Fig. 1.13: Meandering Curve

Fig. 1.14: Bimodal Meander

Using superpositions of sine functions gives rise to a beautiful family of “multi-
frequency” meanders with graphs that would challenge the most skillful cal-
ligraphists of the 1800’s. Figure 1.14 shows a rendition with two sine functions
with equal amplitude A = 1.8, and with k1 = 1, k2 = 1.2.



Chapter 2

Differential Forms

2.1 One-Forms

The concept of the differential of a function is one of the most puzzling ideas
in elementary calculus. In the usual definition, the differential of a dependent
variable y = f(x) is given in terms of the differential of the independent variable
by dy = f ′(x)dx. The problem is with the quantity dx. What does “dx” mean?
What is the difference between ∆x and dx? How much “smaller” than ∆x does
dx have to be? There is no trivial resolution to this question. Most introductory
calculus texts evade the issue by treating dx as an arbitrarily small quantity
(lacking mathematical rigor) or by simply referring to dx as an infinitesimal
(a term introduced by Newton for an idea that could not otherwise be clearly
defined at the time.)

In this section we introduce linear algebraic tools that will allow us to in-
terpret the differential in terms of a linear operator.

2.1.1 Definition Let p ∈ Rn, and let Tp(R
n) be the tangent space at p.

A 1-form at p is a linear map φ from Tp(R
n) into R, in other words, a linear

functional. We recall that such a map must satisfy the following properties:

a) φ(Xp) ∈ R, ∀Xp ∈ Rn (2.1)

b) φ(aXp + bYp) = aφ(Xp) + bφ(Yp), ∀a, b ∈ R, Xp, Yp ∈ Tp(Rn)

A 1-form is a smooth assignment of a linear map φ as above for each point in
the space.

2.1.2 Definition Let f : Rn → R be a real-valued C∞ function. We define
the differential df of the function as the 1-form such that

df(X) = X(f), (2.2)

for every vector field in X in Rn. In other words, at any point p, the differential
df of a function is an operator that assigns to a tangent vector Xp the directional
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2.1. ONE-FORMS 35

derivative of the function in the direction of that vector.

df(X)(p) = Xp(f) = ∇f(p) ·X(p). (2.3)

In particular, if we apply the differential of the coordinate functions xi to the
basis vector fields, we get

dxi(
∂

∂xj
) =

∂xi

∂xj
= δij . (2.4)

The set of all linear functionals on a vector space is called the dual of the
vector space. It is a standard theorem in linear algebra that the dual of a finite
dimensional vector space is also a vector space of the same dimension. Thus,
the space T ?p (Rn) of all 1-forms at p is a vector space which is the dual of
the tangent space Tp(R

n). The space T ?p (Rn) is called the cotangent space of
Rn at the point p. Equation (2.4) indicates that the set of differential forms
{(dx1)p, . . . , (dx

n)p} constitutes the basis of the cotangent space which is dual
to the standard basis {( ∂

∂x1 )p, . . . (
∂
∂xn )p} of the tangent space. The union of all

the cotangent spaces as p ranges over all points in Rn is called the cotangent
bundle T ∗(Rn).

2.1.3 Proposition Let f be a smooth function in Rn and let {x1, . . . xn} be
coordinate functions in a neighborhood U of a point p. Then, the differential
df is given locally by the expression

df =

n∑
i=1

∂f

∂xi
dxi (2.5)

=
∂f

∂xi
dxi

Proof The differential df is by definition a 1-form, so, at each point, it must be
expressible as a linear combination of the basis {(dx1)p, . . . , (dx

n)p}. Therefore,
to prove the proposition, it suffices to show that the expression 2.5 applied to
an arbitrary tangent vector coincides with definition 2.2. To see this, consider
a tangent vector Xp = vj( ∂

∂xj )p and apply the expression above as follows:

(
∂f

∂xi
dxi)p(Xp) = (

∂f

∂xi
dxi)(vj

∂

∂xj
)(p) (2.6)

= vj(
∂f

∂xi
dxi)(

∂

∂xj
)(p)

= vj(
∂f

∂xi
∂xi

∂xj
)(p)

= vj(
∂f

∂xi
δij)(p)

= (
∂f

∂xi
vi)(p)

= ∇f(p) · x(p)

= df(X)(p)
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The definition of differentials as linear functionals on the space of vector fields is
much more satisfactory than the notion of infinitesimals, since the new definition
is based on the rigorous machinery of linear algebra. If α is an arbitrary 1-form,
then locally

α = a1(x)dx1+, . . .+ an(x)dxn, (2.7)

where the coefficients ai are C∞ functions. Thus, a 1-form is a smooth section of
the cotangent bundle and we refer to it as a covariant tensor of rank 1, or simply
a covector. The collection of all 1-forms is denoted by Ω1(Rn) = T 0

1 (Rn). The
coefficients (a1, . . . , an) are called the covariant components of the covector. We
will adopt the convention to always write the covariant components of a covector
with the indices down. Physicists often refer to the covariant components of a
1-form as a covariant vector and this causes some confusion about the position
of the indices. We emphasize that not all one forms are obtained by taking the
differential of a function. If there exists a function f , such that α = df , then
the one form α is called exact. In vector calculus and elementary physics, exact
forms are important in understanding the path independence of line integrals
of conservative vector fields.

As we have already noted, the cotangent space T ∗p (Rn) of 1-forms at a point
p has a natural vector space structure. We can easily extend the operations of
addition and scalar multiplication to the space of all 1-forms by defining

(α+ β)(X) = α(X) + β(X) (2.8)

(fα)(X) = fα(X)

for all vector fields X and all smooth functions f .

2.2 Tensors

As we mentioned at the beginning of this chapter, the notion of the differen-
tial dx is not made precise in elementary treatments of calculus, so consequently,
the differential of area dxdy in R2, as well as the differential of surface area in
R3 also need to be revisited in a more rigorous setting. For this purpose, we
introduce a new type of multiplication between forms that not only captures
the essence of differentials of area and volume, but also provides a rich algebraic
and geometric structure generalizing cross products (which make sense only in
R3) to Euclidean space of any dimension.

2.2.1 Definition A map φ : X (Rn) ×X (Rn) −→ R is called a bilinear
map of vector fields, if it is linear on each slot. That is, ∀Xi, Yi ∈X (Rn), f i ∈
F (Rn), we have

φ(f1X1 + f2X2, Y1) = f1φ(X1, Y1) + f2φ(X2, Y1)

φ(X1, f
1Y1 + f2Y2) = f1φ(X1, Y1) + f2φ(X1, Y2).
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2.2.1 Tensor Products

2.2.2 Definition Let α and β be 1-forms. The tensor product of α and β is
defined as the bilinear map α⊗ β such that

(α⊗ β)(X,Y ) = α(X)β(Y ) (2.9)

for all vector fields X and Y .

Thus, for example, if α = aidx
i and β = bjdx

j , then,

(α⊗ β)(
∂

∂xk
,
∂

∂xl
) = α(

∂

∂xk
)β(

∂

∂xl
)

= (aidx
i)(

∂

∂xk
)(bjdx

j)(
∂

∂xl
)

= aiδ
i
kbjδ

j
l

= akbl.

A quantity of the form T = Tijdx
i ⊗ dxj is called a covariant tensor of rank

2, and we may think of the set {dxi ⊗ dxj} as a basis for all such tensors.
The space of covariant tensor fields of rank 2 is denoted T 0

2 (Rn). We must
caution the reader again that there is possible confusion about the location of
the indices, since physicists often refer to the components Tij as a covariant
tensor of rank two, as long is it satisfies some transformation laws.

In a similar fashion, one can define the tensor product of vectors X and Y
as the bilinear map X ⊗ Y such that

(X ⊗ Y )(f, g) = X(f)Y (g) (2.10)

for any pair of arbitrary functions f and g.

If X = ai ∂
∂xi and Y = bj ∂

∂xj , then the components of X ⊗ Y in the basis
∂
∂xi ⊗

∂
∂xj are simply given by aibj . Any bilinear map of the form

T = T ij
∂

∂xi
⊗ ∂

∂xj
(2.11)

is called a contravariant tensor of rank 2 in Rn . The notion of tensor products
can easily be generalized to higher rank, and in fact one can have tensors of
mixed ranks. For example, a tensor of contravariant rank 2 and covariant rank
1 in Rn is represented in local coordinates by an expression of the form

T = T ijk
∂

∂xi
⊗ ∂

∂xj
⊗ dxk.

This object is also called a tensor of type
(

2
1

)
. Thus, we may think of a tensor of

type
(

2
1

)
as a map with three input slots. The map expects two functions in the

first two slots and a vector in the third one. The action of the map is bilinear
on the two functions and linear on the vector. The output is a real number.
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A tensor of type
(
r
s

)
is written in local coordinates as

T = T i1,...,irj1,...,js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . dxjs (2.12)

The tensor components are given by

T i1,...,irj1,...,js
= T (dxi1 , . . . , dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs
). (2.13)

The set T rs |p(Rn) of all tensors of type T rs at a point p has a vector space
structure. The union of all such vector spaces is called the tensor bundle, and
smooth sections of the bundle are called tensor fields T r

s (Rn); that is, a tensor
field is a smooth assignment of a tensor to each point in Rn.

2.2.2 Inner Product

Let X = ai ∂
∂xi and Y = bj ∂

∂xj be two vector fields and let

g(X,Y ) = δija
ibj . (2.14)

The quantity g(X,Y ) is an example of a bilinear map that the reader will
recognize as the usual dot product.

2.2.3 Definition A bilinear map g(X,Y ) ≡< X,Y > on vectors is called a
real inner product if

1. g(X,Y ) = g(Y,X),

2. g(X,X) ≥ 0, ∀X,

3. g(X,X) = 0 iff X = 0.

Since we assume g(X,Y ) to be bilinear, an inner product is completely specified
by its action on ordered pairs of basis vectors. The components gij of the inner
product are thus given by

g(
∂

∂xi
,
∂

∂xj
) = gij , (2.15)

where gij is a symmetric n×n matrix which we assume to be non-singular. By
linearity, it is easy to see that if X = ai ∂

∂xi and Y = bj ∂
∂xj are two arbitrary

vectors, then

< X,Y >= g(X,Y ) = gija
ibj .

In this sense, an inner product can be viewed as a generalization of the dot
product. The standard Euclidean inner product is obtained if we take gij = δij .
In this case, the quantity g(X,X) =‖ X ‖2 gives the square of the length of the
vector. For this reason, gij is called a metric and g is called a metric tensor.
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Another interpretation of the dot product can be seen if instead one consid-
ers a vector X = ai ∂

∂xi and a 1-form α = bjdx
j . The action of the 1-form on

the vector gives

α(X) = (bjdx
j)(ai ∂

∂xi )

= bja
i(dxj)( ∂

∂xi )

= bja
iδji

= aibi.

If we now define
bi = gijb

j , (2.16)

we see that the equation above can be rewritten as

aibi = gija
ibj ,

and we recover the expression for the inner product.
Equation (2.16) shows that the metric can be used as a mechanism to lower

indices, thus transforming the contravariant components of a vector to covariant
ones. If we let gij be the inverse of the matrix gij , that is

gikgkj = δij , (2.17)

we can also raise covariant indices by the equation

bi = gijbj . (2.18)

We have mentioned that the tangent and cotangent spaces of Euclidean space
at a particular point p are isomorphic. In view of the above discussion, we see
that the metric g can be interpreted on one hand as a bilinear pairing of two
vectors

g : Tp(R
n)× Tp(Rn) −→ R,

and on the other, as inducing a linear isomorphism

G[ : Tp(R
n) −→ T ?p (Rn)

defined by
G[X(Y ) = g(X,Y ), (2.19)

that maps vectors to covectors. To verify this definition is consistent with the
action of lowering indices, let X = ai ∂

∂xi and Y = bj ∂
∂xj . We show that that

G[X = ai dx
i. In fact,

G[X(Y ) = (ai dx
i)(bj ∂

∂xj ),

= aib
jdxi( ∂

∂xj ),

= aib
jδij ,

= aib
i = gija

jbi,

= g(X,Y ).
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The inverse map G] : T ?p (Rn) −→ Tp(R
n) is defined by

< G]α,X >= α(X), (2.20)

for any 1-form α and tangent vector X. In quantum mechanics, it is common
to use Dirac’s notation, in which a linear functional α on a vector space V is
called a bra-vector denoted by 〈α|, and a vector X ∈ V is called a ket-vector,
denoted by |X〉. The, action of a bra-vector on a ket-vector is defined by the
bracket,

〈α|X〉 = α(X). (2.21)

Thus, if the vector space has an inner product as above, we have

〈α|X〉 =< G]α,X >= α(X). (2.22)

The mapping C : T ∗p (Rn) → R given by (α,X) 7→ 〈α|X〉 = α(X) is called
a contraction. In passing, we introduce a related concept called the interior
product, or contraction of a vector and a form. If α is a (k + 1)-form and X a
vector, we define

iXα(X1, . . . , Xk) = α(X,X1, . . . , Xk). (2.23)

In particular, for a one form, we have

iXα = 〈α|X〉 = α(X).

If T is a type
(

1
1

)
tensor, that is,

T = T ijdx
j ⊗ ∂

∂xi
,

The contraction of the tensor is given by

C(T ) = T ij〈dxj | ∂∂xi 〉,
= T ij dx

j( ∂
∂xi ),

= T ij δ
j
i ,

= T ii.

In other words, the contraction of the tensor is the trace of the n×n array that
represents the tensor in the given basis. The notion of raising and lowering
indices as well as contractions can be extended to tensors of all types. Thus,
for example, we have

gijTiklm = T iklm.

A contraction between the indices i and l in the tensor above could be denoted
by the notation

C1
2 (T iklm) = T ikim = Tkm.

This is a very simple concept, but the notation for a general contraction is a
bit awkward because one needs to keep track of the positions of the indices



2.2. TENSORS 41

contracted. Let T be a tensor of type
(
r
s

)
. A contraction Ckl yields a tensor of

type
(
r−1
s−1

)
. Let T be given in the form 2.12. Then,

Clk(T ) = T
i1...il−1,m,ii+1...ir
j1...jk−1,m,jk+1...js

∂
∂xi1
⊗. . .⊗ ∂̂

∂xil
⊗. . .⊗ ∂

∂xir ⊗dx
j1⊗. . .⊗d̂xjk⊗. . . dxjs ,

where the “hat” means that these are excluded. Here is a very neat and most
useful result. If S is a 2-tensor with symmetric components Tij = Tji and A is
a 2-tensor with antisymmetric components Aij = −Aji, then the contraction

SijA
ij = 0 (2.24)

The short proof uses the fact that summation indices are dummy indices and
they can be relabeled at will by any other index that is not already used in an
expression. We have

SijA
ij = SjiA

ij = −SjiAji = −SklAkl = −SjiAij = 0,

since the quantity is the negative of itself.

In terms of the vector space isomorphism between the tangent and cotangent
space induced by the metric, the gradient of a function f , viewed as a differential
geometry vector field, is given by

Grad f = G]df, (2.25)

or in components
(∇f)i ≡ ∇if = gijf,j , (2.26)

where f,j is the commonly used abbreviation for the partial derivative with
respect to xj .

In elementary treatments of calculus, authors often ignore the subtleties of
differential 1-forms and tensor products and define the differential of arc length
as

ds2 ≡ gijdxidxj ,

although what is really meant by such an expression is

ds2 ≡ gijdxi ⊗ dxj . (2.27)

2.2.4 Example In cylindrical coordinates, the differential of arc length is

ds2 = dr2 + r2dθ2 + dz2. (2.28)

In this case, the metric tensor has components

gij =

 1 0 0
0 r2 0
0 0 1

 . (2.29)
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2.2.5 Example In spherical coordinates,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (2.30)

and the differential of arc length is given by

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (2.31)

In this case the metric tensor has components

gij =

 1 0 0
0 r2 0
0 0 r2 sin θ2

 . (2.32)

2.2.3 Minkowski Space

An important object in mathematical physics is the so-called Minkowski
space which is defined as the pair (M(1,3), η), where

M(1,3) = {(t, x1, x2, x3)| t, xi ∈ R} (2.33)

and η is the bilinear map such that

η(X,X) = t2 − (x1)2 − (x2)2 − (x3)2. (2.34)

The matrix representing Minkowski’s metric η is given by

η = diag(1,−1,−1,−1),

in which case, the differential of arc length is given by

ds2 = ηµνdx
µ ⊗ dxν

= dt⊗ dt− dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3

= dt2 − (dx1)2 − (dx2)2 − (dx3)2. (2.35)

Note: Technically speaking, Minkowski’s metric is not really a metric since
η(X,X) = 0 does not imply that X = 0. Non-zero vectors with zero length are
called light-like vectors and they are associated with particles that travel at the
speed of light (which we have set equal to 1 in our system of units.)

The Minkowski metric ηµν and its matrix inverse ηµν are also used to raise
and lower indices in the space in a manner completely analogous to Rn . Thus,
for example, if A is a covariant vector with components

Aµ = (ρ,A1, A2, A3),

then the contravariant components of A are

Aµ = ηµνAν

= (ρ,−A1,−A2,−A3).
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2.2.4 Wedge Products and 2-Forms

2.2.6 Definition A map φ : T (Rn)× T (Rn) −→ R is called alternating if

φ(X,Y ) = −φ(Y,X).

The alternating property is reminiscent of determinants of square matrices that
change sign if any two column vectors are switched. In fact, the determinant
function is a model of an alternating bilinear map on the space M2×2 of two
by two matrices. Of course, for the definition above to apply, one has to view
M2×2 as the space of column vectors.

2.2.7 Definition A 2-form φ is a map φ : T (Rn) × T (Rn) −→ R which is
alternating and bilinear.

2.2.8 Definition Let α and β be 1-forms in Rn and let X and Y be any
two vector fields. The wedge product of the two 1-forms is the map α ∧ β :
T (Rn)× T (Rn) −→ R, given by the equation

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X),

=

[
α(X) α(Y )
β(X) β(Y )

]
(2.36)

2.2.9 Theorem If α and β are 1-forms, then α ∧ β is a 2-form.
Proof Let α and β be 1-forms in Rn and let X and Y be any two vector fields.
Then

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X)

= −(α(Y )β(X)− α(X)β(Y ))

= −(α ∧ β)(Y,X).

Thus, the wedge product of two 1-forms is alternating.
To show that the wedge product of two 1-forms is bilinear, consider 1-forms,

α, β, vector fields X1, X2, Y and functions f1, f2. Then, since the 1-forms are
linear functionals, we get

(α ∧ β)(f1X1 + f2X2, Y ) = α(f1X1 + f2X2)β(Y )− α(Y )β(f1X1 + f2X2)

= [f1α(X1) + f2α(X2)]β(Y )− α(Y )[f1β(X1) + f2β(X2)]

= f1α(X1)β(Y ) + f2α(X2)β(Y )− f1α(Y )β(X1)− f2α(Y )β(X2)

= f1[α(X1)β(Y )− α(Y )β(X1)] + f2[α(X2)β(Y )− α(Y )β(X2)]

= f1(α ∧ β)(X1, Y ) + f2(α ∧ β)(X2, Y ).

The proof of linearity on the second slot is quite similar and is left to the reader.
The wedge product of two 1-forms has characteristics similar to cross prod-

ucts of vectors in the sense that both of these products anti-commute. This
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means that we need to be careful to introduce a minus sign every time we
interchange the order of the operation. Thus, for example, we have

dxi ∧ dxj = −dxj ∧ dxi

if i 6= j, whereas
dxi ∧ dxi = −dxi ∧ dxi = 0

since any quantity that equals the negative of itself must vanish.

2.2.10 Example Consider the case of R2. Let

α = a dx+ b dy,

β = c dx+ d dy.

since dx ∧ dx = dy ∧ dy = 0, and dx ∧ dy = −dy ∧ dx, we get,

α ∧ β = ad dx ∧ dy + bc dy ∧ dx,
= ad dx ∧ dy − bc dx ∧ dy,

=

∣∣∣∣a b
c d

∣∣∣∣ dx ∧ dy.
The similarity between wedge products is even more striking in the next exam-
ple, but we emphasize again that wedge products are much more powerful than
cross products, because wedge products can be computed in any dimension.

2.2.11 Example For combinatoric reasons, it is convenient to label the co-
ordinates as {x1, x2, x3}. Let

α = a1 dx
1 + a2 dx

2 + a3 dx
3,

β = b1 dx
1 + b2 dx

2 + b3 dx
3,

There are only three independent basis 2-forms, namely

dy ∧ dz = dx2 ∧ dx3,

dx ∧ dz = −dx1 ∧ dx3,

dx ∧ dy = dx1 ∧ dx2.

Computing the wedge products in pairs, we get

α ∧ β =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ dx2 ∧ dx3 +

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ dx1 ∧ dx3 +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ dx1 ∧ dx2.

If we consider vectors a = (a1, a2, a3) and b = (b1, b2, b3), we see that the result
above can be written as

α ∧ β = (a× b)1 dx
2 ∧ dx3 − (a× b)2 dx

1 ∧ dx3 + (a× b)3 dx
1 ∧ dx2 (2.37)
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Fig. 2.1: Area Forms

It is worthwhile noticing that if one thinks
of the indices in the formula above as permu-
tations of the integers {1, 2, 3}, the signs of the
three terms correspond to the signature of the
permutation. In particular, the middle term in-
dices constitute an odd permutation, so the sig-
nature is minus one. One can get a good sense of
the geometrical significance and the motivation
for the creation of wedge products by consider-
ing a classical analogy in the language of vector
calculus. As shown in figure 2.1, let us consider
infinitesimal arc length vectors i dx, j dy and
k dz pointing along the coordinate axes. Recall
from the definition, that the cross product of two vectors is a new vector whose
magnitude is the area of the parallelogram subtended by the two vectors and
which points in the direction of a unit vector perpendicular to the plane con-
taining the two vectors, oriented according to the right hand rule. Since i, j and
k are mutually orthogonal vectors, the cross product of any pair is again a unit
vector pointed in the direction of the third or the negative thereof. Thus, for
example, in the xy-plane the differential of area is really an oriented quantity
that can computed by the cross product (i dx × j dy) = dx dy k. A similar
computation yields the differential of areas in the other two coordinate planes,
except that in the xz-plane, the cross product needs to be taken in the reverse
order. In terms of wedge products, the differential of area in the xy-plane is
(dx ∧ dy), so that the oriented nature of the surface element is built-in. Tech-
nically, when reversing the order of variables in a double integral one should
introduce a minus sign. This is typically ignored in basic calculus computations
of double and triple integrals, but it cannot be ignored in vector calculus in the
context of flux of a vector field through a surface.

2.2.12 Example One could of course compute wedge products by just using
the linearity properties. It would not be as efficient as grouping into pairs, but
it would yield the same result. For example, let

α = x2dx− y2dy and β = dx+ dy − 2xydz. Then,

α ∧ β = (x2dx− y2dy) ∧ (dx+ dy − 2xydz)

= x2 dx ∧ dx+ x2 dx ∧ dy − 2x3y dx ∧ dz − y2 dy ∧ dx
−y2 dy ∧ dy + 2xy3 dy ∧ dz

= x2 dx ∧ dy − 2x3y dx ∧ dz − y2 dy ∧ dx+ 2xy3 dy ∧ dz
= (x2 + y2) dx ∧ dy − 2x3y dx ∧ dz + 2xy3 dy ∧ dz.

In local coordinates, a 2-form can always be written in components as

φ = Fij dx
i ∧ dxj (2.38)

If we think of F as a matrix with components Fij , we know from linear algebra
that we can write F uniquely as a sum of a symmetric and an antisymmetric
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matrix, namely,

F = S +A,

=
1

2
(F + FT ) +

1

2
(F − FT ),

Fij = F(ij) + F[ij],

where,

F(ij) =
1

2
(Fij + Fji),

F[ij] =
1

2
(Fij − Fji),

are the completely symmetric and antisymmetric components. Since dxi ∧ dxj
is antisymmetric, and the contraction of a symmetric tensor with an antisym-
metric tensor is zero, one may assume that the components of the 2-form in
equation 2.38 are antisymmetric as well. With this mind, we can easily find a
formula using wedges that generalizes the cross product to any dimension.

Let α = aidx
i and β = bidx

i be any two 1-forms in Rn , and Let X and Y
be arbitrary vector fields. Then

(α ∧ β)(X,Y ) = (aidx
i)(X)(bjdx

j)(Y )− (aidx
i)(Y )(bjdx

j)(X)

= (aibj)[dx
i(X)dxj(Y )− dxi(Y )dxj(X)]

= (aibj)(dx
i ∧ dxj)(X,Y ).

Because of the antisymmetry of the wedge product, the last of the above equa-
tions can be written as

α ∧ β =

n∑
i=1

n∑
j<i

(aibj − ajbi)(dxi ∧ dxj),

=
1

2
(aibj − ajbi)(dxi ∧ dxj).

In particular, if n = 3, the reader will recognize the coefficients of the wedge
product as the components of the cross product of a = a1i + a2j + a3k and
b = b1i + b2j + b3k, as shown earlier.

Remark Quantities such as dx dy and dy dz which often appear in calculus II,
are not really well defined. What is meant by them are actually wedge products
of 1-forms, but in reversing the order of integration, the antisymmetry of the
wedge product is ignored. In performing surface integrals, however, the surfaces
must be considered oriented surfaces and one has to insert a negative sign in
the differential of surface area component in the xz-plane as shown later in
equation 2.83.

2.2.5 Determinants

The properties of n-forms are closely related to determinants, so it might be
helpful to digress a bit and review the fundamentals of determinants, as found
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in any standard linear algebra textbook such as [16]. Let A ∈Mn be an n× n
matrix with column vectors

A = [v1,v2, . . .vn]

2.2.13 Definition A function f : Mn → R is called multilinear if it is linear
on each slot; that is,

f [v1, . . . , a1vi+a2vj , . . . ,vn] = a1f [v1, . . . ,vi, . . . ,vn]+a2f [v1, . . . ,vj , . . . ,vn].

2.2.14 Definition A function f : Mn → R is called alternating if it changes
sign whenever any two columns are switched; that is,

f [v1, . . . ,vi, . . . ,vj , . . . ,vn] = −f [v1, . . . ,vj , . . . ,vi, . . .vn]

2.2.15 Definition A determinant function is a map D : Mn → R that is
a) Multilinear,
b) Alternating,
c) D(I) = 1.

One can then prove that this defines the function uniquely. In particular, if
A = (aij), the determinant can be expressed as

det(A) =
∑
π

sgn(π) a1
π(1)a

2
π(2) . . . a

n
π(n), (2.39)

where the sum is over all the permutations of {1, 2 . . . , n}. The determinant
can also be calculated by the cofactor expansion formula of Laplace. Thus, for
example, the cofactor expansion along the entries on the first row (a1

j), is given
by

det(A) =
∑
k

a1
k∆k

1, (2.40)

where ∆ is the cofactor matrix.
At this point it is convenient to introduce the totally antisymmetric Levi-Civita
permutation symbol defined as follows:

εi1i2...ik =

 +1 if (i1, i2, . . . ik) is an even permutation of (1, 2, . . . , k)
−1 if (i1, i2, . . . , ik) is an odd permutation of (1, 2, . . . , k)
0 otherwise

(2.41)
In dimension 3, there are only 6 (3! = 6) non-vanishing components of εijk,
namely,

ε123 = ε231 = ε312 = 1

ε132 = ε213 = ε321 = −1 (2.42)
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We set the Levi-Civita symbol with some or all the indices up, numerically
equal to the permutation symbol will all the indices down. The permutation
symbols are useful in the theory of determinants. In fact, if A = (aij) is an
n× n matrix, then, equation (2.39) can be written as,

detA = |A| = εi1i2...ina1
i1a

2
i2 . . . a

n
in . (2.43)

Thus, for example, for a 2× 2 matrix,

A =

∣∣∣∣a1
1 a1

2

a2
1 a2

2

∣∣∣∣ ,
det(A) = εija1

ia
2
j ,

= ε12a1
1a

2
2 + ε21a1

2a
2
1,

= a1
1a

2
2 − a1

2a
2
1.

We also introduce the generalized Kronecker delta symbol

δi1i2...ikj1j2...jk
=

 +1 if (i1, i2, . . . , ik) is an even permutation of (j1, j2, . . . , jk)
−1 if (i1, i2, . . . , ik) is an odd permutation of (j1, j2, . . . , jk)
0 otherwise

(2.44)
If one views the indices ik as labelling rows and jk as labelling columns of a
matrix, we can represent the completely antisymmetric symbol by the determi-
nant,

δi1i2...ikj1j2...jk
=

∣∣∣∣∣∣∣∣
δi1j1 δi1j2 . . . δi1jk
δi2j1 δi2j2 . . . δi2jk
. . . . . . . . . . . . . . . . . .

δikj1 δikj2 . . . δikjk

∣∣∣∣∣∣∣∣ (2.45)

Not surprisingly, the generalized Kronecker delta is related to a product of
Levi-Civita symbols by the equation

εi1i2...ikεj1j2...jk = δi1i2...ikj1j2...jk
, (2.46)

which is evident since both sides are completely antisymmetric. In dimension
3, the only non-zero components of δijkl are,

δ12
12 = δ13

13 = δ23
23 = 1 δ12

21 = δ13
31 = δ23

32 = −1

δ21
21 = δ31

31 = δ32
32 = 1 δ21

12 = δ31
13 = δ32

23 = −1.

2.2.16 Proposition In dimension 3 the following identities hold

a) εijkimn = δjkmn = δjmδ
k
n − δjnδkm,

b) εijkijn = 2δkn,

c) εijkijk = 3!
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Proof For part (a), we compute the determinant by cofactor expansion on the
first row

εijkimn =

∣∣∣∣∣∣
δii δim δin
δji δjm δjn
δki δkm δkn

∣∣∣∣∣∣
= δii

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣− δim ∣∣∣∣δji δjn
δki δkn

∣∣∣∣+ δin

∣∣∣∣δji δjm
δki δkm

∣∣∣∣
= 3

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣− ∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣+

∣∣∣∣δjn δjm
δkn δkm

∣∣∣∣
= (3− 1− 1)

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣ =

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣
Here we used the fact that the contraction δii is just the trace of the identity
matrix and the observation that we had to transpose columns in the last deter-
minant in the next to last line. for part (b) follows easily for part(a), namely,

εijkinj = δjkjn,

= δjjδ
k
n − δjnδkj ,

= 3δkn − δkn,
= 2δkn.

From this, part (c) is obvious. With considerably more effort, but inductively
following the same scheme, one can establish the general formula,

εi1...ik,ik+1...inεi1...ik,jk+1...jn = k!δ
ik+1...in
jk+1...jn

. (2.47)

2.2.6 Vector Identities

The permutation symbols are very useful in establishing and manipulating
classical vector formulas. We present here a number of examples. For this
purpose, let,

a = a1i + a2j + a3k,

b = b1i + b2j + b3k,

c = c1i + c2j + c3k,

d = d1i + d2j + d3k,

and

α = a1 dx
1 + a2 dx

2 + a3 dx
3,

β = b1 dx
1 + b2 dx

2 + b3 dx
3,

γ = c1 dx
1 + c2 dx

2 + c3 dx
3,

δ = d1 dx
1 + d2 dx

2 + d3 dx
3,

1. Dot product and cross product

a · b = δijaibj = aib
i, (a× b)k = εk

ijaibj (2.48)

2. Wedge product

α ∧ β = εkij(a× b)k dx
i ∧ dxj . (2.49)
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3. Triple product

a · (b× c) = δija
i(b× c)l,

= δija
iεjklb

kcl,

= εikla
ibkcl,

a · (b× c) = det([abc]), (2.50)

= (a× b) · c (2.51)

4. Triple cross product: bac-cab identity

[a× (b× c)]l = εl
mnam(b× c)n

= εl
mnam(εn

jkbjck)

= εl
mnεn

jkambjck)

= εmnlε
jknambjck)

= (δkmδ
j
l − δ

j
l δ
k
m)ambjck

= bla
mcm − clambm.

Rewriting in vector form

a× (b× c) = b(a · c)− c(a · b). (2.52)

5. Dot product of cross products

(a× b) · (c× d) = a · (b× c× d),

= a · [c(b · d)− d(b · c)]

= (a · c)(b · d)− (a · d)(b · c),

(a× b) · (c× d) =

∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ (2.53)

6. Norm of cross-product

‖a× b‖2 = (a× b) · (a× b),

=

∣∣∣∣a · a a · b
b · a b · b,

∣∣∣∣ ,
= ‖a||2‖b‖ − (a · b)2 (2.54)

7. More wedge products. Let C = ck ∂
∂xk

, D = dm ∂
∂xm . Then,

(α ∧ β)(C,D) =

∣∣∣∣α(C) α(D)
β(C) β(D)

∣∣∣∣ ,
=

∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ (2.55)
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8. Grad, Curl, Div in R3

Let ∇i = ∂
∂xi , ∇

i = δij∇j , A = a and define

� (∇f)i = ∇if
� (∇×A)i = εi

jk∇jak
� ∇ ·A = δij∇iaj = ∇jaj
� ∇ · ∇(f) ≡ ∇2f = ∇i∇if

(a)

(∇×∇f)i = εi
jk∇j∇f = 0,

∇×∇f = 0 (2.56)

(b)

∇ · (∇×A) = δij∇i(∇× a)j ,

= δij∇iεjkl∇kal,
= εjkl∇i∇jak,

∇ · (∇×A) = 0 (2.57)

where in the last step in the two items above we use the fact that
a contraction of two symmetric with two antisymmetric indices is
always 0.

(c) The same steps as in the bac-cab identity give

[∇× (∇×A)]l = ∇l(∇mam)−∇m∇mal,
∇× (∇×A) = ∇(∇ ·A)−∇2A,

where ∇2A means the Laplacian of each component of A.

This last equation is crucial in the derivation of the wave equation for
light from Maxwell’s equations for the electromagnetic field.

2.2.7 n-Forms

2.2.17 Definition Let α1, α2, α2, be one forms, and X1, X2, X3 ∈ X . Let
π be the set of permutations of {1, 2, 3}. Then

(α1 ∧ α2 ∧ α3)(X1, X2, X3) =
∑
π

sign(π)α1(Xπ(1))α
2(Xπ(2))α

3(Xπ(3)),

= εijkα1(Xi)α
2(Xj)α

3(Xk).

This trilinear map is an example of a alternating covariant 3-tensor.
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2.2.18 Definition A 3-form φ in Rn is an alternating, covariant 3-tensor.
In local coordinates, a 3-from can be written as an object of the following type

φ = Aijkdx
i ∧ dxj ∧ dxk (2.58)

where we assume that the wedge product of three 1-forms is associative but
alternating in the sense that if one switches any two differentials, then the
entire expression changes by a minus sign. There is nothing really wrong with
using definition (2.58). This definition however, is coordinate-dependent and
differential geometers prefer coordinate-free definitions, theorems and proofs.
We can easily extend the concepts above to higher order forms.

2.2.19 Definition Let T 0
k (Rn) be the set multilinear maps

t : T (R)× ...× T (R)︸ ︷︷ ︸
k times

→ R

from k copies of T (R) to R. The map t is called skew-symmetric if

t(e1, . . . , ek) = sign(π)t(eπ(1), . . . , eπ(k)), (2.59)

where π is the set of permutations of {1, . . . , k}. A skew-symmetry covariant
tensor of rank k at p, is called a k-form at p. denote by Λk(p)(R

n) the space of
k-forms at p ∈ Rn. This vector space has dimension

dim Λkp(Rn) =

(
n

k

)
=

n!

k!(n− k)!

for k ≤ n and dimension 0 for k > n. We identify Λ0
(p)(R

n) with the space of

C∞ functions at p. The union of all Λk(p)(R
n) as p ranges through all points in

Rn is called the bundle of k-forms and will be denoted by

Λk(Rn) =
⋃
p

Λkp(Rn).

Sections of the bundle are called k-forms and the space of all sections is denoted
by

Ωk(Rn) = Γ(Λk(Rn)).

A section α ∈ Ωk of the bundle technically should be called k-form field, but
the consensus in the literature is to call such a section simply a k-form. In local
coordinates, a k-form can be written as

α = Ai1,...ik(x)dxi1 ∧ . . . dxik . (2.60)

2.2.20 Definition The alternation map A : T 0
k (Rn)→ T 0

k (Rn) is defined by

At(e1, . . . , ek) =
1

k!

∑
π

(signπ)t(eπ(1), . . . , eπ(k)).
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2.2.21 Definition If α ∈ Ωk(Rn) and β ∈ Ωl(Rn), then

α ∧ β =
(k + l)!

k!l!
A(α⊗ β) (2.61)

If α is a k-form and β an l-form, we have

α ∧ β = (−1)klβ ∧ α. (2.62)

Now, for a little combinatorics. Factorials are unavoidable due to the permu-
tation attributes of the wedge product. The convention here follows Marsden
[20] and Spivak [34], which reduces proliferation of factorials later. Let us count
the number of linearly independent differential forms in Euclidean space. More
specifically, we want to find a basis for the vector space of k-forms in R3. As
stated above, we will think of 0-forms as being ordinary functions. Since func-
tions are the “scalars”, the space of 0-forms as a vector space has dimension
1.

R2 Forms Dim
0-forms f 1
1-forms fdx1, gdx2 2
2-forms fdx1 ∧ dx2 1

R3 Forms Dim
0-forms f 1
1-forms f1dx

1, f2dx
2, f3dx

3 3
2-forms f1dx

2 ∧ dx3, f2dx
3 ∧ dx1, f3dx

1 ∧ dx2 3
3-forms f1dx

1 ∧ dx2 ∧ dx3 1

The binomial coefficient pattern should be evident to the reader.
It is possible define tensor-valued differential forms. Let E = T rs (Rn) be the
tensor bundle. A tensor-valued p-form is defined as a section

T ∈ Ωp(Rn, E) = Γ(E ⊗ Λp(Rn)).

In local coordinates, a tensor-valued k-form is a
(
r
s+p

)
tensor

T = T i1,...ir j1,...js,k1,...,kp
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗dxj1⊗· · ·⊗dxjs ∧dxk1 ∧ . . .∧dxkp .

(2.63)
Thus, for example, the quantity

Ωij = 1
2R

i
jkl dx

k ∧ dxl

would be called the components of a
(

1
1

)
-valued 2-form

Ω = Ωij
∂

∂xi
⊗ dxj .

The notion of the wedge product can be extended to tensor-valued forms using
tensor products on the tensorial indices and wedge products on the differential
form indices.
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2.3 Exterior Derivatives

In this section we introduce a differential operator that generalizes the clas-
sical gradient, curl and divergence operators.

2.3.1 Definition Let α be a one form in Rn. The differential dα is the
two-form defined by

dα(X,Y ) = X(α(Y ))− Y (α(X)), (2.64)

for any pair of vector fields X and Y .
To explore the meaning of this definition in local coordinates, let α = fidx

i

and let X = ∂
∂xj , Y = ∂

∂xk
, then

dα(X,Y ) =
∂

∂xj

[
fidx

i

(
∂

∂xk

)]
− ∂

∂xk

[
fidx

i

(
∂

∂xj

)]
,

=
∂

∂xj
(fiδ

i
k)− ∂

∂xk
(fiδ

i
j),

dα

(
∂

∂xj
,
∂

∂xj

)
=
∂fk
∂xj
− ∂fj
∂xk

Therefore, taking into account the antisymmetry of wedge products, we have.

dα =
1

2

(
∂fk
∂xj
− ∂fj
∂xk

)
dxj ∧ dxk,

=
∂fk
∂xj

dxj ∧ dxk,

= dfk ∧ dxk.

The definition 2.64 of a differential of a 1-form can be refined to provide
a coordinate-free definition in general manifolds (see 6.28,) and it can be ex-
tended to differentials of m-forms. For now, the computation immediately
above suffices to motivate the following coordinate dependent definition (for a
coordinate-free definition for general manifolds, see (7.17):

2.3.2 Definition Let α be an m-form, given in coordinates as in equa-
tion (2.60). The exterior derivative of α is the (m+ 1)-form dα given by

dα = dAi1,...im ∧ dxi1 . . . dxim

=
∂Ai1,...im
∂xi0

(x)dxi0 ∧ dxi1 . . . dxim . (2.65)

In the special case where α is a 0-form, that is, a function, we write

df =
∂f

∂xi
dxi.
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2.3.3 Theorem

a) d : Ωm −→ Ωm+1

b) d2 = d ◦ d = 0

c) d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ ∀α ∈ Ωp, β ∈ Ωq (2.66)

Proof

a) Obvious from equation (2.65).

b) First, we prove the proposition for α = f ∈ Ω0. We have

d(dα) = d(
∂f

∂xi
)

=
∂2f

∂xj∂xi
dxj ∧ dxi

=
1

2
[
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj
]dxj ∧ dxi

= 0.

Now, suppose that α is represented locally as in equation (2.60). It follows from
equation 2.65, that

d(dα) = d(dAi1,...im) ∧ dxi0 ∧ dxi1 . . . dxim = 0.

c) Let α ∈ Ωp, β ∈ Ωq. Then, we can write

α = Ai1,...ip(x)dxi1 ∧ . . . dxip

β = Bj1,...jq (x)dxj1 ∧ . . . dxjq .
(2.67)

By definition,

α ∧ β = Ai1...ipBj1...jq (dx
i1 ∧ . . . ∧ dxip) ∧ (dxj1 ∧ . . . ∧ dxjq ).

Now, we take the exterior derivative of the last equation, taking into account
that d(fg) = fdg + gdf for any functions f and g. We get

d(α ∧ β) = [d(Ai1...ip)Bj1...jq + (Ai1...ip)d(Bj1...jq )]

(dxi1 ∧ . . . ∧ dxip) ∧ (dxj1 ∧ . . . ∧ dxjq )
= [dAi1...ip ∧ (dxi1 ∧ . . . ∧ dxip)] ∧ [Bj1...jq ∧ (dxj1 ∧ . . . ∧ dxjq )]+

[Ai1...ip ∧ (dxi1 ∧ . . . ∧ dxip)] ∧ (−1)p[dBj1...jq ∧ (dxj1 ∧ . . . ∧ dxjq )]
= dα ∧ β + (−1)pα ∧ dβ.

The (−1)p factor comes into play since in order to pass the term dBji...jp through
p number of 1-forms of type dxi, one must perform p transpositions.
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2.3.1 Pull-back

2.3.4 Definition Let F : Rn → Rm be a differentiable mapping and let α
be a k-form in Rm. Then, at each point y ∈ Rm with y = F (x), the mapping
F induces a map called the pull-back F ∗ : Ωk(F (x)) → Ωk(x) defined by

(F ∗α)x(X1, . . . Xk) = αF (x)(F∗X1, . . . F∗Xk), (2.68)

for any tangent vectors {X1, . . . Xk} in Rn .
If g is a 0-form, namely a function, F ∗(g) = g ◦ F . We have the following
theorem.

2.3.5 Theorem

a) F ∗(gα1) = (g ◦ F )F ∗α,
b) F ∗(α1 + α2) = F ∗ α1 + F ∗α2,
c) F ∗(α ∧ β) = F ∗α ∧ F ∗β,
d) F ∗(dα) = d(F ∗α.)

(2.69)

Part (d) is encapsulated in the commuting diagram in figure 2.2.

Fig. 2.2: d F ∗ = F ∗ d

Proof Part (a) is basically the definition for the case of 0-forms and part (b)
is clear from the linearity of the push-forward. We leave part (c) as an exercise
and prove part (d). In the case of a 0-form, let g, be a function and X a vector
field in Rm. By a simple computation that amounts to recycling definitions,
we have:

d(F ∗g) = d(g ◦ F ),

(F ∗dg)(X) = dg(F∗X) = (F∗X)(g),

= X(g ◦ F ) = d(g ◦ F )(X),

F ∗dg = d(g ◦ F ),

so, F ∗(dg) = d(F ∗g) is true by the composite mapping theorem. Let α be a
k-form

α = Ai1,...ik dy
i1 ∧ . . . dyik ,

so that

dα = (dAi1,...ik) ∧ dyi1 . . . dyik .
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Then, by part (c),

F ∗α = (F ∗Ai1,...ik)F ∗dyi1 ∧ . . . F ∗dyik ,
d(F ∗α) = dF ∗(Ai1,...ik) ∧ F ∗dyi1 ∧ . . . F ∗dyik ,

= F ∗(dAi1,...ik) ∧ F ∗dyi1 ∧ . . . F ∗dyik ,
= F ∗(dα).

So again, the result rests on the chain rule.

To connect with advanced calculus, suppose that locally the mapping F is
given by yk = fk(xi). Then the pullback of the form dg given the formula
above F ∗dg = d(g ◦ F ) is given in local coordinates by the chain rule

F ∗dg =
∂g

∂xj
dxj .

In particular, the pull-back of local coordinate functions is given by

F ∗(dyi) =
∂yi

∂xj
dxj . (2.70)

Thus, pullback for the basis 1-forms dyk is yet another manifestation of the
differential as a linear map represented by the Jacobian

dyk =
∂yk

∂xi
dxi. (2.71)

In particular, if m = n,

dΩ = dy1 ∧ dy2 ∧ . . . ∧ dyn,

=
∂y1

∂xi1
∂y2

∂xi2
. . .

∂yn

∂xin
dxi1 ∧ dxi2 ∧ . . . dxin ,

= εi1i2...in
∂y1

∂xi1
∂y2

∂xi2
. . .

∂yn

∂xin
dx1 ∧ dx2 ∧ . . . dxn,

= |J | ∧ dx1 ∧ . . . dxn. (2.72)

So, the pull-back of the volume form,

F ∗dΩ = |J | dx1 ∧ . . . ∧ dxn,

gives rise to the integrand that appears in the change of variables theorem for
integration. More explicitly, let R ∈ Rn be a simply connected region, F be a
mapping F : R ∈ Rn → Rm, with m ≥ n. If ω is a k- form in Rm, then∫

F (R)

ω =

∫
R

F ∗ω (2.73)

We refer to this formulation of the change of variables theorem as integration
by pull-back.
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If F : Rn → Rn is a diffeomorphism, one can push-forward forms with the
inverse of the pull-back F∗ = (F−1)∗.

2.3.6 Example Line Integrals

Let ω = fi dx
i be a one form in R3 and let C be the curve given by the mapping

φ : I = t ∈ [a, b]→ x(t) ∈ R3. We can write ω = F · dx, where F = (f1, f2, f3)
is a vector field. Then the integration by pull-back equation 2.73 reads,

∫
C

F · dx =

∫
C

ω,

=

∫
φ(I)

ω,

=

∫
I

φ∗ω,

=

∫
I

f i(x(t))
dxi

dt
dt,

=

∫
I

F(x(t))
dx

dt
dt

This coincides with the definition of line integrals as introduced in calculus.

2.3.7 Example Polar Coordinates

Let x = r cos θ and y = r sin θ and f = f(x, y). Then

dx ∧ dy = (−r sin θdθ + cos θdr) ∧ (r cos θdθ + sin θdr),

= −r sin2 θdθ ∧ dr + r cos2 θdr ∧ dθ,
= (r cos2 θ + r sin2 θ)(dr ∧ dθ),
= r(dr ∧ dθ).∫ ∫

f(x, y)dx ∧ dy =

∫ ∫
f(x(r, θ), y(r, θ)) r(dr ∧ dθ). (2.74)

In this case, the element of arc length is diagonal

ds2 = dr2 + r2dθ2,

as it should be for an orthogonal change of variables. The differential of area is

dA =
√

det g dr ∧ dθ,
= r(dr ∧ dθ)

If the polar coordinates map is denoted by F : R2 → R2, then equation 2.74 is
just the explicit expression for the pullback of F ∗( f dA).

2.3.8 Example Polar coordinates are just a special example of the general
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transformation in R2 given by,

x = x(u, v), dx =
∂x

∂u
du+

∂x

∂u
dv,

y = y(u, v), dy =
∂y

∂u
du+

∂y

∂u
dv,

for which

φ ∗ (dx ∧ dy) =

∣∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ du ∧ dv (2.75)

2.3.9 Example Surface Integrals
LetR ∈ R2 be a simply connected region with boundary δR and let the mapping

φ : (u, v) ∈ R −→ x(uα) ∈ R2

describe a surface S with boundary C = φ(δR). Here, α = 1, 2, with u =
u1, v = u2. Given a vector field F = (f1, f2, f3), we assign to it the 2-form

ω = F · dS,
= f1 dx

2 ∧ dx3 − f2 dx
1 ∧ dx3 + f3 dx

1 ∧ dx2,

= εijkfi dx
j ∧ dxk.

Then, ∫ ∫
S

F · dS =

∫ ∫
S

ω,

=

∫ ∫
R

φ∗ω,

=

∫ ∫
R

εijkfi
∂xj

∂uα
duα ∧ ∂x

k

∂uβ
duβ ,

=

∫ ∫
R

F · (∂x

∂u
× ∂x

∂u
) du ∧ dv

We elaborate a bit on this slick computation, for the benefit of those readers
who may have gotten got lost in the index manipulation.∫ ∫

S

F · dS =

∫ ∫
S

ω,

=

∫ ∫
R

φ∗ω,

=

∫ ∫
R

[
f1 φ∗(dx2 ∧ dx3)− f2 φ∗(dx1 ∧ dx3) + f3 φ∗(dx1 ∧ dx2)

]
,

=

∫ ∫
R

[
f1

∣∣∣∣∣∂x
2

∂u
∂x2

∂v

∂x3

∂u
∂x3

∂v

∣∣∣∣∣− f2

∣∣∣∣∣∂x
1

∂u
∂x1

∂v

∂x3

∂u
∂x3

∂v

∣∣∣∣∣+ f3

∣∣∣∣∣∂x
1

∂u
∂x1

∂v

∂x2

∂u
∂x2

∂v

∣∣∣∣∣
]
du ∧ dv

=

∫ ∫
R

F ·
(
∂x

∂u
× ∂x

∂u

)
du ∧ dv
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This pull-back formula for surface integrals is how most students are introduced
to this subject in the third semester of calculus.

2.3.10 Remark

1. The differential of area in polar coordinates is of course a special example
of the change of coordinate theorem for multiple integrals as indicated
above.

2. As shown in equation 2.32 the metric in spherical coordinates is given by

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2,

so the differential of volume is

dV =
√

det g dr ∧ dθ ∧ dφ,
= r2 sin θ dr ∧ dθ ∧ dφ.

2.3.2 Stokes’ Theorem in Rn

Let α = P (x, y) dx+Q(x, y) dy. Then,

dα = (∂P∂x dx+ ∂P
∂y ) ∧ dx+ (∂Q∂x dx+ ∂Q

∂y ) ∧ dy

= ∂P
∂y dy ∧ dx+ ∂Q

∂x dx ∧ dy

= (∂Q∂x −
∂P
∂y ) dx ∧ dy. (2.76)

This example is related to Green’s theorem in R2. For convenience, we include
here a proof of Green’s Theorem in a special case. We say that a region D

Fig. 2.3: Simple closed curve.

in the plane is of type I if it is enclosed between the graphs of two continuous
functions of x. The region inside the simple closed curve in figure 2.3 bounded
by f1(x) and f2(x), between a and b, is a region of type I. A region in the plane
is of type II if it lies between two continuous functions of y. The region in 2.3
bounded between c ≤ y ≤ d, would be a region of type II.

2.3.11 Green’s theorem
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Let C be a simple closed curve in the xy-plane and let ∂P/∂x and ∂Q/∂y be
continuous functions of (x, y) inside and on C. Let R be the region inside the
closed curve so that the boundary δR = C. Then∮

δR

P dx+Q dy =

∫ ∫
R

[
∂Q

∂x
− ∂P

∂y

]
dA. (2.77)

We first prove that for a type I region such as the one bounded between a and
b shown in 2.3, we have ∮

C

P dx = −
∫ ∫

D

∂P

∂y
dA (2.78)

Where C comprises the curves C1, C2, C3 and C4. By the fundamental theorem
of calculus, we have on the right,∫ ∫

D

∂P

∂y
dA =

∫ b

a

∫ f2(x)

f1(x)

∂P

∂y
dydx,

=

∫ b

a

[P (x, f2(x))− P (x, f1(x))] dx.

On the left, the integrals along C2 and C4 vanish, since there is no variation on
x. The integral along C3 is traversed in opposite direction of C1, so we have,

∮
C

P (x, y) dx =

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

P (x, y) dx,

=

∫
C1

P (x, y) dx−
∫
C3

P (x, y) dx,

=

∫ b

a

P (x, f1(x)) dx−
∫ b

a

P (x, f2(x)) dx

This establishes the veracity of equation 2.78 for type I regions. By a completely
analogous process on type II regions, we find that∮

C

Q dy =

∫ ∫
D

∂Q

∂x
dA. (2.79)

The theorem follows by subdividing R into a grid of regions of both types, all
oriented in the same direction as shown on the right in figure 2.3. Then one
applies equations 2.78 or 2.79, as appropriate, for each of the subdomains. All
contributions from internal boundaries cancel since each is traversed twice, each
in opposite directions. All that remains of the line integrals is the contribution
along the boundary δR.
Let α = P dx + Q dy. Comparing with equation 2.76, we can write Green’s
theorem in the form ∫

C

α =

∫ ∫
D

dα. (2.80)
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It is possible to extend Green’s Theorem to more complicated regions that are
not simple connected. Green’s theorem is a special case in dimension of two of
Stoke’s theorem.

2.3.12 Stokes’ theorem

If ω is a C1 one form in Rn and S is C2 surface with boundary δS = C, then

∫
δS

ω =

∫ ∫
S

dω. (2.81)

Proof The proof can be done by pulling back to the uv-plane and using the
chain rule, thus allowing us to use Green’s theorem. Let ω = fi dx

i and S be
parametrized by xi = xi(uα), where (u1, u2) ∈ R ⊂ R2. We assume that the
boundary of R is a simple closed curve. Then

∫
C

ω =

∫
δS

fi dx
i,

=

∫
δR

fi
∂xi

∂uα
duα,

=

∫ ∫
R

∂

∂uβ
(fi

∂xi

∂uα
) duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ
∂xi

∂uα
+ fi

∂2xi

∂uβ∂uα

]
duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ
∂xi

∂uα

]
duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ

]
duβ ∧

[
∂xi

∂uα

]
duα

=

∫ ∫
S

∂fi
∂xk

dxk ∧ dxi =

∫ ∫
S

dfi ∧ dxi

=

∫ ∫
S

dω.

We present a less intuitive but far more elegant proof. The idea is formally
the same, namely, we pull-back to the plane by formula 2.73, apply Green’s
theorem in the form given in equation 2.80, and then use the fact that the
pull-back commutes with the differential as in theorem 2.69.

Let φ : R ⊂ R2 → S denote the surface parametrization map. Assume that
φ−1(δS) = δ(φ−1S), that is, the inverse of the boundary of S is the boundary
of the domain R. Then,
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∫
δS

ω =

∫
φ−1(δS)

φ∗ω =

∫
δ(φ−1S)

φ∗ω,

=

∫ ∫
φ−1S

d(φ∗ω),

=

∫ ∫
φ−1S

φ∗(dω),

=

∫
S

dω.

The proof of Stokes’ theorem presented here is one of those cases mentioned in
the preface, where we have simplified the mathematics for the sake of clarity.
Among other things, a rigorous proof requires one to quantify what is meant by
the boundary (δS) of a region. The process involves either introducing simplices
(generalized segments, triangles, tetrahedra...) or singular cubes (generalized
segments, rectangles, cubes...). The former are preferred in the treatment of
homology in algebraic topology, but the latter are more natural to use in the
context of integration on manifolds with boundary. A singular n-cube in Rn is
the image under a continuous map,

In : [0, 1]n → Rn,

of the Cartesian product of n copies of the unit interval [0, 1]. The idea is
to divide the region S into formal finite sums of singular cubes, called chains.
One then introduces a boundary operator δ, that maps a singular n-cube and
hence n-chain, into an (n− 1)-singular cube or (n− 1)-chain. Thus, in R3 for
example, the boundary of a cube, is the sum

∑
ciFi of the six faces with a

judicious choice of coefficients ci ∈ {−1, 1}. With an appropriate scheme to
label faces of singular cube and a corresponding definition of the boundary
map, one proves that δ ◦ δ = 0. For a thorough treatment, see the beautiful
book Calculus on Manifolds by M. Spivak [33].

Closed and Exact forms

2.3.13 Example Let α = M(x, y)dx+N(x, y)dy, and suppose that dα = 0.
Then, by the previous example,

dα = (∂N∂x −
∂M
∂y ) dx ∧ dy.

Thus, dα = 0 iff Nx = My, which implies that N = fy and Mx for some
function f(x, y). Hence,

α = fx dx+ fy dy = df.

The reader should also be familiar with this example in the context of exact
differential equations of first order and conservative force fields.

2.3.14 Definition A differential form α is called closed if dα = 0.
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2.3.15 Definition A differential form α is called exact if there exists a form
β such that α = dβ.

Since d ◦ d = 0, it is clear that an exact form is also closed. The converse need
not be true. The standard counterexample is the form,

ω =
−y dx+ x dy

x2 + y2
(2.82)

A short computation shows that dω = 0, so ω is closed. Let θ = tan−1(y/x) be
the angle in polar coordinates. One can recognize that ω = dθ, but this is only
true in R2 − L, where L is the non-negative x-axis, L = {(x, 0) ∈ R2|x ≥ 0}.
If one computes the line integral from (−1, 0) to (1, 0) along the top half of the
unit circle, the result is π. But the line integral along the bottom half of the
unit circle gives −π. The integral is therefore not path independent, so ω 6= dθ
on any region that contains the origin. If one tries to find another C1 function f
such that ω = df , one can easily show that f = θ+ const, which is not possible
along L.

On the other hand, if one imposes the topological condition that the space
is contractible, then the statement is true. A contractible space is one that can
be deformed continuously to an interior point. We have the following,

2.3.16 Poincaré Lemma. In a contractible space (such as Rn ), if a differential
form is closed, then it is exact.

To prove this lemma we need much more machinery than we have available
at this point. We present the proof in 7.1.17.

2.4 The Hodge ? Operator

2.4.1 Dual Forms

An important lesson students learn in linear algebra, is that all vector spaces
of finite dimension n are isomorphic to each other. Thus, for instance, the space
P3 of all real polynomials in x of degree 3, and the space M2×2 of real 2 by
2 matrices are, in terms of their vector space properties, basically no different
from the Euclidean vector space R4. As a good example of this, consider the
tangent space TpR

3. The process of replacing ∂
∂x by i, ∂

∂y by j and ∂
∂z by k

is a linear, 1-1 and onto map that sends the “vector” part of a tangent vector
a1 ∂

∂x + a2 ∂
∂y + a3 ∂

∂z to a regular Euclidean vector (a1, a2, a3).
We have also observed that the tangent space TpR

n is isomorphic to the
cotangent space T ?pRn . In this case, the vector space isomorphism maps the

standard basis vectors { ∂
∂xi } to their duals {dxi}. This isomorphism then trans-

forms a contravariant vector to a covariant vector. In terms of components, the
isomorphism is provided by the Euclidean metric that maps the components of
a contravariant vector with indices up to a covariant vector with indices down.

Another interesting example is provided by the spaces Λ1
p(R

3) and Λ2
p(R

3),
both of which have dimension 3. It follows that these two spaces must be
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isomorphic. In this case the isomorphism is given as follows:

dx 7−→ dy ∧ dz
dy 7−→ −dx ∧ dz
dz 7−→ dx ∧ dy

(2.83)

More generally, we have seen that the dimension of the space of k-forms in
Rn is given by the binomial coefficient

(
n
k

)
. Since(

n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
,

it must be true that
Λkp(Rn) ∼= Λn−kp (Rn). (2.84)

To describe the isomorphism between these two spaces, we introduce the fol-
lowing generalization of determinants,

2.4.1 Definition . Let φ : Rn → Rn be a linear map. The unique constant
detφ such that,

φ∗ : Λn(Rn)→ Λn(Rn)

satisfies,
φ∗ω = (detφ) ω, (2.85)

for all n-forms, is called the determinant of φ. This is congruent with the
standard linear algebra formula 2.43, since in a particular basis, the Jacobian
of a linear map is the same as the matrix the represents the linear map in that
basis. Let, g(X,Y ) be an inner product and {e1, . . . , en} be an orthonormal
basis with dual forms {θ1, . . . θn}. The element of arc length is, the bilinear
symmetric tensor

ds2 = gij θ
i ⊗ θj .

The metric then induces an n-form

dΩ = θ1 ∧ θ2 . . . ∧ θn,

called the volume element. With this choice of form, the reader will recognize
equation 2.85 as the integrand in the change of variables theorem for multiple
integration, as in example 2.74. More generally, if {f1, . . . fn} is a positively
oriented basis with dual basis {φ1, . . . φn}, then,

dΩ =
√

det g φ1 ∧ . . . ∧ φn. (2.86)

2.4.2 Definition Let g be the matrix representing the components of the
metric in Rn. The Hodge ? operator is the linear isomorphism ? : Λnp (Rn) −→
Λn−kp (Rn) defined in standard local coordinates by the equation,

? (dxi1 ∧ . . . ∧ dxik) =

√
det g

(n− k)!
εi1...ik ik+1...in

dxik+1 ∧ . . . ∧ dxin , (2.87)
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For flat Euclidean space
√

det g = 1, so the factor in the definition may appear
superfluous. However, when we consider more general Riemannian manifolds,
we will have to be more careful with raising and lowering indices with the metric,
and take into account that the Levi-Civita symbol is not a tensor but something
slightly more complicated called a tensor density. Including the

√
det g is done

in anticipation of this more general setting later. Since the forms dxi1∧. . .∧dxik
constitute a basis of the vector space Λkp(Rn) and the ? operator is assumed to
be a linear map, equation (2.87) completely specifies the map for all k-forms.
In particular, if the components of a dual of a form are equal to the components
of the form, the tensor is called self-dual. Of course, this can only happen if
the tensor and its dual are of the same rank.

A metric g on Rn induces an inner product on Λk(Rn) as follows. Let
{e1, , . . . en} by an orthonormal basis with dual basis θ1, . . . , θn. If α, β ∈
Λk(Rn), we can write

α = ai1...ik θ
i1∧, . . . θik ,

β = bj1...jk θ
j1∧, . . . θjk

The induced inner product is defined by

< α, β >(k)=
1

k!
ai1...ikb

i1...ik . (2.88)

If α, β ∈ Λk(Rn), then ?β ∈ Λn−k(Rn), so α ∧ ?β must be a multiple of the
volume form. The Hodge ? operator is the unique isomorphism such that

α ∧ ?β =< α, β >(k) dΩ. (2.89)

Clearly,
α ∧ ?β = ?α ∧ β

When it is evident that the inner product is the induced inner product on
Λk(Rn) the indicator (k) is often suppressed. An equivalent definition of the
induced inner product of two k-forms is given by

< α, β >=

∫
(α ∧ ?β) dΩ. (2.90)

If α is a k-form and β is a (k − 1)-form, one can define the adjoint or co-
differential by

< δα, β >=< α, dβ > . (2.91)

The adjoint is given by
δ = (−1)nk+n+1 ? d ? . (2.92)

In particular,

δ =

{
− ? d ? if n is even

(−1)k ? d ? if n is odd
(2.93)

The differential maps (k − 1)-forms to k-forms, and the co-differential maps
k-forms to (k − 1)-forms. It is also the case that δ ◦ δ = 0 The combination,

∆ = (d+ δ)2 = dδ + δd (2.94)
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extends the Laplacian operator to forms. It maps k-forms to k-forms. A central
result in harmonic analysis is the Hodge decomposition theorem, that states that
given any k-form ω, can be split uniquely as

ω = dα+ δβ + γ, (2.95)

where α ∈ Ωk−1, β ∈ Ωk+1, and ∆γ = 0

2.4.3 Example Hodge operator in R2

In R2,

?dx = dy ? dy = −dx,

or, if one thinks of a matrix representation of ? : Ω(R2) → Ω(R2) in standard
basis, we can write the above as

?

[
dx
dy

]
=

[
0 1
−1 0

] [
dx
dy

]
.

The reader might wish to peek at the symplectic matrix 5.50 in the discussion in
chapter 5 on conformal mappings. Given functions u = u(x, y) and v = v(x, y),
let ω = u dx− v dy. Then,

dω = −(uy + vx) dx ∧ dy,
d ? ω = (ux − uy) dx ∧ dy,

hence
dω = 0⇒ uy = −vx,
?dω = 0⇒ ux = vy.

(2.96)

Thus, the equations dω = 0 and d?ω = 0 are equivalent to the Cauchy-Riemann
equations for a holomorphic function f(z) = u(x, y) + iv(x, y). On the other
hand,

du = ux dx+ uy dy,

dv = vx dx+ uy dy,

so the determinant of the Jacobian of the transformation T : (x, y) → (u, v)),
with the condition above on ω, is given by,

|J | =
∣∣∣∣ux uy
vx vy

∣∣∣∣ = u2
x + u2

y = v2
x + v2

y.

If |J | 6= 0, we can set ux = R cosφ, uy = R sinφ, for some R and some angle
φ. Then,

|J | =
∣∣∣∣R 0
0 R

∣∣∣∣ ∣∣∣∣ cosφ sinφ
− sinφ cosφ

∣∣∣∣ .
Thus, the transformation is given by the composition of a dilation and a ro-
tation. A more thorough discussion of this topic is found in the section of
conformal maps in chapter 5.
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2.4.4 Example Hodge operator in R3

?dx1 = ε1 jkdx
j ∧ dxk,

=
1

2!
[ε1 23dx

2 ∧ dx3 + ε1 32dx
3 ∧ dx2],

=
1

2!
[dx2 ∧ dx3 − dx3 ∧ dx2],

=
1

2!
[dx2 ∧ dx3 + dx2 ∧ dx3],

= dx2 ∧ dx3.

We leave it to the reader to complete the computation of the action of the ?
operator on the other basis forms. The results are

?dx1 = +dx2 ∧ dx3,

?dx2 = −dx1 ∧ dx3,

?dx3 = +dx1 ∧ dx2, (2.97)

?(dx2 ∧ dx3) = dx1,

?(−dx3 ∧ dx1) = dx2,

?(dx1 ∧ dx2) = dx3, (2.98)

and
? (dx1 ∧ dx2 ∧ dx3) = 1. (2.99)

In particular, if f : R3 −→ R is any 0-form (a function), then,

?f = f(dx1 ∧ dx2 ∧ dx3),

= fdV, (2.100)

where dV is the volume form.

2.4.5 Example Let α = a1dx
1a2dx

2 + a3dx
3, and β = b1dx

1b2dx
2 + b3dx

3.
Then,

?(α ∧ β) = (a2b3 − a3b2) ? (dx2 ∧ dx3) + (a1b3 − a3b1) ? (dx1 ∧ dx3) +

(a1b2 − a2b1) ? (dx1 ∧ dx2),

= (a2b3 − a3b2)dx1 + (a1b3 − a3b1)dx2 + (a1b2 − a2b1)dx3,

= (a× b)i dx
i. (2.101)

The previous examples provide some insight on the action of the ∧ and ? opera-
tors. If one thinks of the quantities dx1, dx2 and dx3 as analogous to~i, ~j and ~k,
then it should be apparent that equations (2.97) are the differential geometry
versions of the well-known relations

i = j× k,

j = −i× k,

k = i× j.
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2.4.6 Example In Minkowski space the collection of all 2-forms has dimen-
sion

(
4
2

)
= 6. The Hodge ? operator in this case splits Ω2(M1,3) into two 3-dim

subspaces Ω2
±, such that ? : Ω2

± −→ Ω2
∓.

More specifically, Ω2
+ is spanned by the forms {dx0∧dx1, dx0∧dx2, dx0∧dx3},

and Ω2
− is spanned by the forms {dx2∧dx3,−dx1∧dx3, dx1∧dx2}. The action

of ? on Ω2
+ is

?(dx0 ∧ dx1) = 1
2ε

01
kldx

k ∧ dxl = −dx2 ∧ dx3,

?(dx0 ∧ dx2) = 1
2ε

02
kldx

k ∧ dxl = +dx1 ∧ dx3,

?(dx0 ∧ dx3) = 1
2ε

03
kldx

k ∧ dxl = −dx1 ∧ dx2,

and on Ω2
−,

?(+dx2 ∧ dx3) = 1
2ε

23
kldx

k ∧ dxl = dx0 ∧ dx1,

?(−dx1 ∧ dx3) = 1
2ε

13
kldx

k ∧ dxl = dx0 ∧ dx2,

?(+dx1 ∧ dx2) = 1
2ε

12
kldx

k ∧ dxl = dx0 ∧ dx3.

In verifying the equations above, we recall that the Levi-Civita symbols that
contain an index with value 0 in the up position have an extra minus sign as
a result of raising the index with η00. If F ∈ Ω2(M), we will formally write
F = F+ + F−, where F± ∈ Ω2

±. We would like to note that the action of the
dual operator on Ω2(M) is such that ? : Ω2(M) −→ Ω2(M), and ?2 = −1. In a
vector space a map like ?, with the property ?2 = −1 is called a linear involution
of the space. In the case in question, Ω2

± are the eigenspaces corresponding to
the +1 and -1 eigenvalues of this involution. It is also worthwhile to calculate
the duals of 1-forms in M1,3. The results are,

?dt = −dx1 ∧ dx2 ∧ dx3,

?dx1 = +dx2 ∧ dt ∧ dx3,

?dx2 = +dt ∧ dx1 ∧ dx3,

?dx3 = +dx1 ∧ dt ∧ dx2. (2.102)

2.4.2 Laplacian

Classical differential operators that enter in Green’s and Stokes’ theorems
are better understood as special manifestations of the exterior differential and
the Hodge ? operators in R3. Here is precisely how this works:

1. Let f : R3 −→ R be a C∞ function. Then

df =
∂f

∂xj
dxj = ∇f · dx. (2.103)

2. Let α = Aidx
i be a 1-form in R3. Then

(?d)α =
1

2
(
∂Ai
∂xj
− ∂Ai
∂xj

) ? (dxi ∧ dxj)

= (∇×A) · dS. (2.104)
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3. Let α = B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2 be a 2-form in R3.

Then

dα = (
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
) dx1 ∧ dx2 ∧ dx3

= (∇ ·B) dV. (2.105)

4. Let α = Bidx
i, then

(?d?) α = ∇ ·B. (2.106)

5. Let f be a real valued function. Then the Laplacian is given by:

(? d ?) df = ∇ · ∇f = ∇2f. (2.107)

The Laplacian definition here is consistent with 2.94 because in the case of a
function f , that is, a 0-form, δf = 0 so ∆f = δdf . The results above can be
summarized in terms of short exact sequence called the de Rham complex as
shown in figure 2.4. The sequence is called exact because successive application
of the differential operator gives zero. That is, d ◦ d = 0. Since there are no
4-forms in R3, the sequence terminates as shown. If one starts with a function

Fig. 2.4: de Rham Complex in R3

in Ω0(R3), then (d ◦ d)f = 0 just says that ∇ × ∇f = 0, as in the case of
conservative vector fields. If instead, one starts with a one form α in Ω1(R3),
corresponding to a vector field A, then (d ◦ d)α = 0 says that ∇ · (∇×A) = 0,
as in the case of incompressible vector fields. If one starts with a function, but
instead of applying the differential twice consecutively, one “hops” in between
with the Hodge operator, the result is the Laplacian of the function.

If we denote by R a simply connected closed region in Euclidean space
whose boundary is δR , then in terms of forms, the fundamental theorem of
calculus, Stokes’ theorem (See ref 2.81), and the divergence theorem in R3 can
be expressed by a single generalized Stokes’ theorem.∫

δR

ω =

∫ ∫
R

dω. (2.108)

We find it irresistible to point out that if one defines a complex one-form,

ω = f(z) dz, (2.109)

where f(z) = u(x, y) + iv(x, y), and where one assumes that u, v are differen-
tiable with continuous derivatives, then the conditions introduced in equation
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2.96 are equivalent to requiring that dω = 0. In other words, if the form is
closed, then u and v satisfy the Cauchy-Riemann equations. Stokes’ theorem
then tells us that in a contractible region with boundary C, the line integral∫

C

ω =

∫
C

f(z) dz = 0.

This is Cauchy’s integral theorem. We should also point out the tantalizing
resemblance of equations 2.96 to Maxwell’s equations in the section that follows.

2.4.3 Maxwell Equations

The classical equations of Maxwell describing electromagnetic phenomena
are

∇ ·E = 4πρ ∇×B = 4πJ +
∂E

∂t

∇ ·B = 0 ∇×E = −∂B
∂t
, (2.110)

where we are using Gaussian units with c = 1. We would like to formulate
these equations in the language of differential forms. Let xµ = (t, x1, x2, x3) be
local coordinates in Minkowski’s space M1,3. Define the Maxwell 2-form F by
the equation

F =
1

2
Fµνdx

µ ∧ dxν , (µ, ν = 0, 1, 2, 3), (2.111)

where

Fµν =


0 −Ex −Ey −Ey

Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 . (2.112)

Written in complete detail, Maxwell’s 2-form is given by

F = −Exdt ∧ dx1 − Eydt ∧ dx2 − Ezdt ∧ dx3 +

Bzdx
1 ∧ dx2 −Bydx1 ∧ dx3 +Bxdx

2 ∧ dx3. (2.113)

We also define the source current 1-form

J = Jµdx
µ = ρdt+ J1dx

1 + J2dx
2 + J3dx

3. (2.114)

2.4.7 Proposition Maxwell’s Equations (2.110) are equivalent to the equa-
tions

dF = 0,

d ? F = 4π ? J. (2.115)

Proof The proof is by direct computation using the definitions of the exterior
derivative and the Hodge ? operator.
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dF = −∂Ex
∂x2

∧ dx2 ∧ dt ∧ dx1 − ∂Ex
∂x3

∧ dx3 ∧ dt ∧ dx1 +

−∂Ey
∂x1

∧ dx1 ∧ dt ∧ dx2 − ∂Ey
∂x3

∧ dx3 ∧ dt ∧ dx2 +

−∂Ez
∂x1

∧ dx1 ∧ dt ∧ dx3 − ∂Ez
∂x2

∧ dx2 ∧ dt ∧ dx3 +

∂Bz
∂t
∧ dt ∧ dx1 ∧ dx2 − ∂Bz

∂x3
∧ dx3 ∧ dx1 ∧ dx2 −

∂By
∂t
∧ dt ∧ dx1 ∧ dx3 − ∂By

∂x2
∧ dx2 ∧ dx1 ∧ dx3 +

∂Bx
∂t
∧ dt ∧ dx2 ∧ dx3 +

∂Bx
∂x1

∧ dx1 ∧ dx2 ∧ dx3.

Collecting terms and using the antisymmetry of the wedge operator, we get

dF = (
∂Bx
∂x1

+
∂By
∂x2

+
∂Bz
∂x3

) dx1 ∧ dx2 ∧ dx3 +

(
∂Ey
∂x3

− ∂Ez
∂x2

− ∂Bx
∂t

) dx2 ∧ dt ∧ dx3 +

(
∂Ez
∂x1

− ∂Ex
∂dx3

− ∂By
∂t

) dt ∧ dx1 ∧ x3 +

(
∂Ex
∂x2

− ∂Ey
∂x1

− ∂Bz
∂t

) dx1 ∧ dt ∧ dx2.

Therefore, dF = 0 iff
∂Bx
∂x1

+
∂By
∂x2

+
∂By
∂x3

= 0,

which is the same as
∇ ·B = 0,

and

∂Ey
∂x3

− ∂Ez
∂x2

− ∂Bx
∂t

= 0,

∂Ez
∂x1

− ∂Ex
∂x3

− ∂By
∂t

= 0,

∂Ex
∂x2

− ∂Ey
∂x1

− ∂Bz
∂t

= 0,

which means that

−∇×E− ∂B

∂t
= 0. (2.116)

To verify the second set of Maxwell equations, we first compute the dual of the
current density 1-form (2.114) using the results from example 2.4.1. We get

?J = [−ρdx1∧dx2∧dx3 +J1dx
2∧dt∧dx3 +J2dt∧dx1∧dx3 +J3dx

1∧dt∧dx2].
(2.117)
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We could now proceed to compute d ? F , but perhaps it is more elegant to
notice that F ∈ Ω2(M), and so, according to example (2.4.1), F splits into
F = F+ +F−. In fact, we see from (2.112) that the components of F+ are those
of −E and the components of F− constitute the magnetic field vector B. Using
the results of example (2.4.1), we can immediately write the components of ?F :

?F =
1

2!
Bxdt ∧ dx1 +Bydt ∧ dx2 +Bzdt ∧ dx3 +

Ezdx
1 ∧ dx2 − Eydx1 ∧ dx3 + Exdx

2 ∧ dx3], (2.118)

or equivalently,

F ?µν =


0 Bx By By

−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0

 . (2.119)

Effectively, the dual operator amounts to exchanging

E 7−→ −B

B 7−→ +E,

in the left hand side of the first set of Maxwell equations. We infer from
equations (2.116) and (2.117) that

∇ ·E = 4πρ

and

∇×B− ∂E

∂t
= 4πJ.

Most standard electrodynamic textbooks carry out the computation entirely
tensor components, To connect with this approach, we should mention that it
Fµν represents the electromagnetic tensor, then the dual tensor is

F ?µν =

√
det g

2
εµνστF

στ . (2.120)

Since dF = 0, in a contractible region there exists a one form A such that
F = dA. The form A is called the 4-vector potential. The components of A are,

A = Aµ dx
µ,

Aµ = (φ,A) (2.121)

where φ is the electric potential and A the magnetic vector potential. The
components of the electromagnetic tensor F are given by

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

. (2.122)

The classical electromagnetic Lagrangian is

L
EM

= −1

4
FµνF

µν + JµAµ, (2.123)
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with corresponding Euler-Lagrange equations

∂

∂xµ

[
∂L
∂Aµ
∂Aν

]
− ∂L

∂Aµ
= 0. (2.124)

To carry out the computation we first use the Minkowski to write the Lagrangian
with the indices down. The key is to keep in mind that Aµ,ν are treated as
independent variables, so the derivatives of Aα,β vanish unless µ = α and
ν = β. We get,

∂L

∂(Aµ,ν)
= −1

4

∂L

∂(Aµ,ν)
(FαβF

αβ),

= −1

4

∂L

∂(Aµ,ν)
(FαβFλση

αληβσ),

= −1

4
ηαληβσ[Fαβ(δµλδ

µ
σ − δµσδ

µ
λ) + Fλσ(δµαδ

µ
β − δ

µ
βδ
µ
α),

= −1

4
[ηαµηβνFαβ + ηµληνσFλσ − ηανηβµFαβ − ηνληµσ(Fλσ],

= −1

4
[Fµν + Fµν − F νµ − F νµ],

= −Fµν .

On the other hand,
∂L

∂Aµ
= Jν .

Therefore, the field equations are

∂

∂xµ
Fµν = Jµ. (2.125)

The dual equations equivalent to the other pair of Maxwell equations is

∂

∂xµ
? Fµν = 0.

In the gauge theory formulation of classical electrodynamics, the invariant ex-
pression for the Lagrangian is the square of the norm of the field F under the
induced inner product

< F,F >= −
∫

(F ∧ ?F ) dΩ. (2.126)

This the starting point to generalize to non-Abelian gauge theories.



Chapter 3

Connections

3.1 Frames

This chapter is dedicated to professor Arthur Fischer. In my second year as
an undergraduate at Berkeley, I took the undergraduate course in differential
geometry which to this day is still called Math 140. The driving force in my
career was trying to understand the general theory of relativity, which was only
available at the graduate level. However, the graduate course (Math 280 at the
time) read that the only prerequisite was Math 140. So I got emboldened and
enrolled in the graduate course taught that year by Dr. Fischer. The required
book for the course was the classic by Adler, Bazin, Schiffer. I loved the book;
it was definitely within my reach and I began to devour the pages with the great
satisfaction that I was getting a grasp of the mathematics and the physics. On
the other hand, I was completely lost in the course. It seemed as if it had
nothing to do with the material I was learning on my own. Around the third
week of classes, Dr. Fischer went through a computation with these mysterious
operators, and upon finishing the computation he said if we were following, he
had just derived the formula for the Christoffel symbols. Clearly, I was not
following, they looked nothing like the Christoffel symbols I had learned from
the book. So, with great embarrassment I went to his office and explained my
predicament. He smiled, apologized when he did not need to, and invited me to
1-1 sessions for the rest of the two-semester course. That is how I got through
the book he was really using, namely Abraham-Marsden. I am forever grateful.

As noted in Chapter 1, the theory of curves in R3 can be elegantly for-
mulated by introducing orthonormal triplets of vectors which we called Frenet
frames. The Frenet vectors are adapted to the curves in such a manner that the
rate of change of the frame gives information about the curvature of the curve.
In this chapter we will study the properties of arbitrary frames and their cor-
responding rates of change in the direction of the various vectors in the frame.
These concepts will then be applied later to special frames adapted to surfaces.

3.1.1 Definition A coordinate frame in Rn is an n-tuple of vector fields
{e1, . . . , en} which are linearly independent at each point p in the space.

75
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In local coordinates {x1, . . . , xn}, we can always express the frame vectors
as linear combinations of the standard basis vectors

ei =

n∑
j=1

Aji
∂

∂xj
= ∂jA

j
i, (3.1)

where ∂j = ∂
∂xj . Placing the basis vectors ∂j on the left is done to be consistent

with the summation convention, keeping in mind that the differential operators
do not act on the matrix elements. We assume the matrix A = (Aji) to be
nonsingular at each point. In linear algebra, this concept is called a change
of basis, the difference being that in our case, the transformation matrix A
depends on the position. A frame field is called orthonormal if at each point,

< ei, ej >= δij . (3.2)

Throughout this chapter, we will assume that all frame fields are orthonormal.
Whereas this restriction is not necessary, it is convenient because it results in
considerable simplification in computions.

3.1.2 Proposition If {e1, . . . , en} is an orthonormal frame, then the trans-
formation matrix is orthogonal (ie, AAT = I)

Proof The proof is by direct computation. Let ei = ∂jA
j
i. Then

δij = < ei, ej >,

= < ∂kA
k
i, ∂lA

l
j >,

= AkiA
l
j < ∂k, ∂l >,

= AkiA
l
jδkl,

= AkiAkj ,

= Aki(A
T )jk.

Hence

(AT )jkA
k
i = δij ,

(AT )jkA
k
i = δji,

ATA = I.

Given a frame {ei}, we can also introduce the corresponding dual coframe
forms θi by requiring that

θi(ej) = δij . (3.3)

Since the dual coframe is a set of 1-forms, they can also be expressed in local
coordinates as linear combinations

θi = Bikdx
k.
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It follows from equation( 3.3), that

θi(ej) = Bikdx
k(∂lA

l
j),

= BikA
l
jdx

k(∂l),

= BikA
l
jδ
k
l,

δij = BikA
k
j .

Therefore, we conclude that BA = I, so B = A−1 = AT . In other words, when
the frames are orthonormal, we have

ei = ∂kA
k
i,

θi = Aikdx
k. (3.4)

3.1.3 Example Consider the transformation from Cartesian to cylindrical
coordinates:

x = r cos θ, y = r sin θ, z = z. (3.5)

Using the chain rule for partial derivatives, we have

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
,

∂

∂z
=

∂

∂z
.

The vectors ∂
∂r , and ∂

∂z are clearly unit vectors.

To make the vector ∂
∂θ a unit vector, it suffices to divide it by its length r.

We can then compute the dot products of each pair of vectors and easily verify
that the quantities

e1 =
∂

∂r
, e2 =

1

r

∂

∂θ
, e3 =

∂

∂z
, (3.6)

are a triplet of mutually orthogonal unit vectors and thus constitute an or-
thonormal frame. The surfaces with constant value for the coordinates r, θ and
z respectively, represent a set of mutually orthogonal surfaces at each point.
The frame vectors at a point are normal to these surfaces as shown in figure
3.1. Physicists often refer to these frame vectors as {r̂, θ̂, ẑ}, or as {er, eθ, ez.}.

3.1.4 Example For spherical coordinates (2.30)

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,
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Fig. 3.1: Cylindrical and Spherical Frames.

the chain rule leads to

∂

∂r
= sin θ cosφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cos θ

∂

∂z
,

∂

∂θ
= r cos θ cosφ

∂

∂x
+ r cos θ sinφ

∂

∂y
− r sin θ

∂

∂z
,

∂

∂φ
= −r sin θ sinφ

∂

∂x
+ r sin θ cosφ

∂

∂y
.

The vector ∂
∂r is of unit length but the other two need to be normalized. As

before, all we need to do is divide the vectors by their magnitude. For ∂
∂θ , we

divide by r and for ∂
∂φ , we divide by r sin θ. Taking the dot products of all pairs

and using basic trigonometric identities, one can verify that we again obtain an
orthonormal frame.

e1 = er =
∂

∂r
, e2 = eθ =

1

r

∂

∂θ
, e3 = eϕ =

1

r sin θ

∂

∂φ
. (3.7)

Furthermore, the frame vectors are normal to triply orthogonal surfaces, which
in this case are spheres, cones and planes, as shown in figure 3.1. The fact that
the chain rule in the two situations above leads to orthonormal frames is not
coincidental. The results are related to the orthogonality of the level surfaces
xi = constant. Since the level surfaces are orthogonal whenever they intersect,
one expects the gradients of the surfaces to also be orthogonal. Transformations
of this type are called triply orthogonal systems.

3.2 Curvilinear Coordinates

Orthogonal transformations, such as spherical and cylindrical coordinates,
appear ubiquitously in mathematical physics, because the geometry of many
problems in this discipline exhibit symmetry with respect to an axis or to the
origin. In such situations, transformations to the appropriate coordinate sys-
tem often result in considerable simplification of the field equations involved
in the problem. It has been shown that the Laplace operator that appears
in the potential, heat, wave, and Schrödinger field equations, is separable in
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exactly twelve orthogonal coordinate systems. A simple and efficient method
to calculate the Laplacian in orthogonal coordinates can be implemented using
differential forms.

3.2.1 Example In spherical coordinates the differential of arc length is given
by (see equation 2.31) the metric:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

Let

θ1 = dr,

θ2 = rdθ,

θ3 = r sin θdφ. (3.8)

Note that these three 1-forms constitute the dual coframe to the orthonormal
frame derived in equation( 3.7). Consider a scalar field f = f(r, θ, φ). We
now calculate the Laplacian of f in spherical coordinates using the methods of
section 2.4.2. To do this, we first compute the differential df and express the
result in terms of the coframe.

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂φ
dφ,

=
∂f

∂r
θ1 +

1

r

∂f

∂θ
θ2 +

1

r sin θ

∂f

∂φ
θ3.

The components df in the coframe represent the gradient in spherical coordi-
nates. Continuing with the scheme of section 2.4.2, we next apply the Hodge
? operator. Then, we rewrite the resulting 2-form in terms of wedge products
of coordinate differentials so that we can apply the definition of the exterior
derivative.

?df =
∂f

∂r
θ2 ∧ θ3 − 1

r

∂f

∂θ
θ1 ∧ θ3 +

1

r sin θ

∂f

∂φ
θ1 ∧ θ2,

= r2 sin θ
∂f

∂r
dθ ∧ dφ− r sin θ

1

r

∂f

∂θ
dr ∧ dφ+ r

1

r sin θ

∂f

∂φ
dr ∧ dθ,

= r2 sin θ
∂f

∂r
dθ ∧ dφ− sin θ

∂f

∂θ
dr ∧ dφ+

1

sin θ

∂f

∂φ
dr ∧ dθ,

d ? df =
∂

∂r
(r2 sin θ

∂f

∂r
)dr ∧ dθ ∧ dφ− ∂

∂θ
(sin θ

∂f

∂θ
)dθ ∧ dr ∧ dφ+

1

sin θ

∂

∂φ
(
∂f

∂φ
)dφ ∧ dr ∧ dθ,

=

[
sin θ

∂

∂r
(r2 ∂f

∂r
) +

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin θ

∂2f

∂φ2

]
dr ∧ dθ ∧ dφ.

Finally, rewriting the differentials back in terms of the coframe, we get

d ? df =
1

r2 sin θ

[
sin θ

∂

∂r
(r2 ∂f

∂r
) +

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin θ

∂2f

∂φ2

]
θ1 ∧ θ2 ∧ θ3.
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Therefore, the Laplacian of f is given by

∇2f =
1

r2

∂

∂r

[
r2 ∂f

∂r

]
+

1

r2

[
1

sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin2 θ

∂2f

∂φ2

]
. (3.9)

The derivation of the expression for the spherical Laplacian by differential forms
is elegant and leads naturally to the operator in Sturm-Liouville form.

The process above can be carried out for general orthogonal transformations.
A change of coordinates xi = xi(uk) leads to an orthogonal transformation if
in the new coordinate system uk, the line metric

ds2 = g11(du1)2 + g22(du2)2 + g33(du3)2 (3.10)

only has diagonal entries. In this case, we choose the coframe

θ1 =
√
g11du

1 = h1du
1,

θ2 =
√
g22du

2 = h2du
2,

θ3 =
√
g33du

3 = h3du
3.

Classically, the quantities {h1, h2, h3} are called the weights. Please note that,
in the interest of connecting to classical terminology, we have exchanged two
indices for one and this will cause small discrepancies with the index summation
convention. We will revert to using a summation symbol when these discrep-
ancies occur. To satisfy the duality condition θi(ej) = δij , we must choose the
corresponding frame vectors ei as follows:

e1 =
1
√
g11

∂

∂u1
=

1

h1

∂

∂u1
,

e2 =
1
√
g22

∂

∂u2
=

1

h2

∂

∂u2
,

e3 =
1
√
g33

∂

∂u3
=

1

h3

∂

∂u3
.

Gradient. Let f = f(xi) and xi = xi(uk). Then

df =
∂f

∂xk
dxk,

=
∂f

∂ui
∂ui

∂xk
dxk,

=
∂f

∂ui
dui,

=
∑
i

1

hi
∂f

∂ui
θi.

= ei(f)θi.

As expected, the components of the gradient in the coframe θi are the just the
frame vectors.

∇ =

(
1

h1

∂

∂u1
,

1

h2

∂

∂u2
,

1

h3

∂

∂u3

)
. (3.11)
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Curl. Let F = (F1, F2, F3) be a classical vector field. Construct the corre-
sponding 1-form F = Fiθ

i in the coframe. We calculate the curl using the dual
of the exterior derivative.

F = F1θ
1 + F2θ

2 + F3θ
3,

= (h1F1)du1 + (h2F2)du2 + (h3F3)du3,

= (hF )idu
i, where (hF )i = hiFi.

dF =
1

2

[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]
dui ∧ duj ,

=
1

hihj

[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]
dθi ∧ dθj .

?dF = εijk

[
1

hihj
[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]

]
θk = (∇× F )kθ

k.

Thus, the components of the curl are(
1

h2h3
[
∂(h3F3)

∂u2
− ∂(h2F2)

∂u3
],

1

h1h3
[
∂(h3F3)

∂u1
− ∂(h1F1)

∂u3
],

1

h1h2
[
∂(h1F1)

∂u2
− ∂(h2F2)

∂u1
]

)
.

Divergence. As before, let F = Fiθ
i and recall that ∇ · F = ?d ? F . The

computation yields

F = F1θ
1 + F2θ

2 + F3θ
3

?F = F1θ
2 ∧ θ3 + F2θ

3 ∧ θ1 + F3θ
1 ∧ θ2

= (h2h3F1)du2 ∧ du3 + (h1h3F2)du3 ∧ du1 + (h1h2F3)du1 ∧ du2

d ? dF =

[
∂(h2h3F1)

∂u1
+
∂(h1h3F2)

∂u2
+
∂(h1h2F3)

∂u3

]
du1 ∧ du2 ∧ du3.

Therefore,

∇ · F = ?d ? F =
1

h1h2h3

[
∂(h2h3F1)

∂u1
+
∂(h1h3F2)

∂u2
+
∂(h1h2F3)

∂u3

]
. (3.12)

3.3 Covariant Derivative

In this section we introduce a generalization of directional derivatives. The
directional derivative measures the rate of change of a function in the direction
of a vector. We seek a quantity which measures the rate of change of a vector
field in the direction of another.

3.3.1 Definition Given a pair (X,Y ) of arbitrary vector field in Rn, we
associate a new vector field ∇XY , so that ∇X : X (Rn) −→ X (Rn). The
quantity ∇ called a Koszul connection if it satisfies the following properties:

1. ∇fX(Y ) = f∇XY,

2. ∇(X1+X2)Y = ∇X1
Y +∇X2

Y,
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3. ∇X(Y1 + Y2) = ∇XY1 +∇XY2,

4. ∇XfY = X(f)Y + f∇XY,

for all vector fields X,X1, X2, Y, Y1, Y2 ∈ X (Rn) and all smooth functions f .
Implicit in the properties, we set ∇Xf = X(f). The definition states that the
map ∇X is linear on X but behaves as a linear derivation on Y. For this reason,
the quantity ∇XY is called the covariant derivative of Y in the direction of X.

3.3.2 Proposition Let Y = f i ∂
∂xi be a vector field in Rn , and let X another

C∞ vector field. Then the operator given by

∇XY = X(f i)
∂

∂xi
(3.13)

defines a Koszul connection.
Proof The proof just requires verification that the four properties above are
satisfied, and it is left as an exercise.

The operator defined in this proposition is the standard connection compat-
ible with the Euclidean metric. The action of this connection on a vector field
Y yields a new vector field whose components are the directional derivatives of
the components of Y .

3.3.3 Example Let

X = x
∂

∂x
+ xz

∂

∂y
, Y = x2 ∂

∂x
+ xy2 ∂

∂y
.

Then,

∇XY = X(x2)
∂

∂x
+X(xy2)

∂

∂y
,

= [x
∂

∂x
(x2) + xz

∂

∂y
(x2)]

∂

∂x
+ [x

∂

∂x
(xy2) + xz

∂

∂y
(xy2)]

∂

∂y
,

= 2x2 ∂

∂x
+ (xy2 + 2x2yz)

∂

∂y
.

3.3.4 Definition A Koszul connection ∇X is compatible with the metric
g(Y,Z) if

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > . (3.14)

if F : Rn → Rn is an isometry so that < F∗X,F∗Y >=< X,Y >, then it is
connection preserving in the sense

F∗(∇XY ) = ∇F∗XF∗y. (3.15)

In Euclidean space, the components of the standard frame vectors are constant,
and thus their rates of change in any direction vanish. Let ei be arbitrary frame
field with dual forms θi. The covariant derivatives of the frame vectors in the
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directions of a vector X will in general yield new vectors. The new vectors must
be linear combinations of the basis vectors as follows:

∇Xe1 = ω1
1(X)e1 + ω2

1(X)e2 + ω3
1(X)e3,

∇Xe2 = ω1
2(X)e1 + ω2

2(X)e2 + ω3
2(X)e3,

∇Xe3 = ω1
3(X)e1 + ω2

3(X)e2 + ω3
3(X)e3. (3.16)

The coefficients can be more succinctly expressed using the compact index no-
tation,

∇Xei = ejω
j
i(X). (3.17)

It follows immediately that

ωji(X) = θj(∇Xei). (3.18)

Equivalently, one can take the inner product of both sides of equation (3.17)
with ek to get

< ∇Xei, ek > = < ejω
j
i(X), ek >

= ωji(X) < ej , ek >

= ωji(X)gjk

Hence,
< ∇Xei, ek >= ωki(X) (3.19)

The left-hand side of the last equation is the inner product of two vectors,
so the expression represents an array of functions. Consequently, the right-
hand side also represents an array of functions. In addition, both expressions
are linear on X, since by definition, ∇X is linear on X. We conclude that the
right-hand side can be interpreted as a matrix in which each entry is a 1-forms
acting on the vector X to yield a function. The matrix valued quantity ωij is
called the connection form. Sacrificing some inconsistency with the formalism of
differential forms for the sake of connecting to classical notation, we sometimes
write the above equation as

< dei, ek >= ωki, (3.20)

where {ei} are vector calculus vectors forming an orthonormal basis.

3.3.5 Definition Let ∇X be a Koszul connection and let {ei} be a frame.
The Christoffel symbols associated with the connection in the given frame are
the functions Γkij given by

∇eiej = Γkijek (3.21)

The Christoffel symbols are the coefficients that give the representation of the
rate of change of the frame vectors in the direction of the frame vectors them-
selves. Many physicists therefore refer to the Christoffel symbols as the connec-
tion, resulting in possible confusion. The precise relation between the Christoffel
symbols and the connection 1-forms is captured by the equations,

ωki(ej) = Γkij , (3.22)
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or equivalently

ωki = Γkijθ
j . (3.23)

In a general frame in Rn there are n2 entries in the connection 1-form and n3

Christoffel symbols. The number of independent components is reduced if one
assumes that the frame is orthonormal.
If T = T iei is a general vector field, then

∇ejT = ∇ej (T iei)
= T i,j ei + T iΓkjiek

= (T i,j + T kΓijk)ei, (3.24)

which is denoted classically as the covariant derivative

T i‖j = T i,j + ΓijkT
k. (3.25)

Here, the comma in the subscript means regular derivative. The equation above
is also commonly written as

∇ejT i = ∇jT i = T i,j + ΓijkT
k,

We should point out the accepted but inconsistent use of terminology. What is
meant by the notation ∇jT i above is not the covariant derivative of the vector
but the tensor components of the covariant derivative of the vector; one more
reminder that most physicists conflate a tensor with its components.

3.3.6 Proposition Let {ei} be an orthonormal frame and ∇X be a Koszul
connection compatible with the metric . Then

ωji = −ωij (3.26)

Proof Since it is given that < ei, ej >= δij , we have

0 = ∇X < ei, ej >,

= < ∇Xei, ej > + < ei,∇Xej >,
= < ωkiek, ej > + < ei, ω

k
jek >,

= ωki < ek, ej > +ωkj < ei, ek >,

= ωkigkj + ωkjgik,

= ωji + ωij .

thus proving that ω is indeed antisymmetric.
The covariant derivative can be extended to the full tensor field T r

s (Rn) by
requiring that

a) ∇X : T r
s (Rn)→ T r

s (Rn),
b) ∇X(T1 ⊗ T2) = ∇XT1 ⊗ T2 + T1 ⊗∇XT2,
c) ∇X commutes with all contractions, ∇X(CT ) = C(∇X).



3.3. COVARIANT DERIVATIVE 85

Let us compute the covariant derivative of a one-form ω with respect to vector
field X. The contraction of ω ⊗ Y is the function iY ω = ω(Y ). Taking the
covariant derivative, we have,

∇X(ω(Y )) = (∇Xω)(Y )− ω(∇XY ),

X(ω(Y )) = (∇Xω)(Y )− ω(∇XY ).

Hence, the coordinate-free formula for the covariant derivative of one-form is,

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ). (3.27)

Let θi be the dual forms to ei. We have

∇X(θi ⊗ ej) = ∇Xθi ⊗ ej + θi ⊗∇Xej .

The contraction of iejθ
i = θi(ej) = δij , Hence, taking the contraction of the

equation above, we see that the left-hand side becomes 0, and we conclude
that,

(∇Xθi)(ej) = −θi(∇Xej). (3.28)

Let ω = Tiθ
i. Then,

(∇Xω)(ej) = (∇X(Tiθ
i))(ej),

= X(Ti)θ
i(ej) + Ti(∇Xθi)(ej),

= X(Tj)− Tiθi(∇Xej). (3.29)

If we now set X = ek, we get,

(∇ekω)(ei) = Tj,k − Tiθi(Γlkjel),
= Tj,k − TiδilΓlkj ,
= Tj,k − ΓijkTi.

Classically, we write

∇kTj = Tj‖k = Tj,k − ΓijkTi. (3.30)

In general, let T be a tensor of type
(
r
s

)
,

T = T i1,...,irj1,...,js
ei1 ⊗ · · · ⊗ eir ⊗ θj1 ⊗ . . . θjs . (3.31)

Since we know how to take the covariant derivative of a function, a vector,
and a one form, we can use Leibnitz rule for tensor products and property of
the covariant derivative commuting with contractions, to get by induction, a
formula for the covariant derivative of an

(
r
s

)
-tensor,

(∇XT )(θi1 , ..., θir , ej1 , ...ejs) = X(T (θi1 , ..., θir , ej1 , ..., ejs))

− T (∇Xθi1 , ..., θir , ej1 , ..., ejs)− · · · − T (θi1 , ...,∇Xθir , ej1 , ..., ejs)...

− T (θi1 , ..., θir ,∇Xej1 , ..., ejs)− · · · − T (θi1 , ..., θir , ej1 , ...,∇Xejs).
(3.32)
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The covariant derivative picks up a term with a positive Christoffel symbol
factor for each contravariant index and a term with a negative Christoffel sym-
bol factor for each covariant index. Thus, for example, for a

(
1
2

)
tensor, be

components of the covariant derivative in classical notation are

∇lT ijk = T ijk‖l = T ijk,l + ΓilhT
h
jk − ΓhjlT

i
hk − ΓhklT

i
hj . (3.33)

In particular, if g is the metric tensor and X,Y, Z vector fields, we have

(∇Xg)(Y,Z) = X(g(X,Y ))− g(∇XY, Z)− g(X,∇XZ).

Thus, if we impose the condition ∇Xg = 0, the equation above reads

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > . (3.34)

In other words, a connection is compatible with the metric just means that the
metric is covariantly constant along any vector field.

In an orthonormal frame in Rn the number of independent coefficients of the
connection 1-form is (1/2)n(n− 1) since by antisymmetry, the diagonal entries
are zero, and one only needs to count the number of entries in the upper tri-
angular part of the n × n matrix ωij . Similarly, the number of independent
Christoffel symbols gets reduced to (1/2)n2(n − 1). Raising one index with
gij , we find that ωij is also antisymmetric, so in R3 the connection equations
become

∇X [e1, e2, e3] = [e1, e2, e3]

 0 ω1
2(X) ω1

3(X)
−ω1

2(X) 0 ω2
3(X)

−ω1
3(X) −ω2

3(X) 0

 (3.35)

Comparing the Frenet frame equation (1.39), we notice the obvious similarity
to the general frame equations above. Clearly, the Frenet frame is a special case
in which the basis vectors have been adapted to a curve, resulting in a simpler
connection in which some of the coefficients vanish. A further simplification
occurs in the Frenet frame, since in this case the equations represent the rate
of change of the frame only along the direction of the curve rather than an
arbitrary direction vector X. To elaborate on this transition from classical to
modern notation, consider a unit speed curve β(s). Then, as we discussed in
section 1.15, we associate with the classical tangent vector T = dx

ds the vector

field T = β′(s) = dxi

ds
∂
∂xi . Let W = W (β(s)) = wj(s) ∂

∂xj be an arbitrary vector
field constrained to the curve. The rate of change of W along the curve is given
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by

∇TW = ∇
(
dxi

ds
∂
∂xi )

(wj
∂

∂xj
),

=
dxi

ds
∇ ∂
∂xi

(wj
∂

∂xj
)

=
dxi

ds

∂wj

∂xi
∂

∂xj

=
dwj

ds

∂

∂xj

= W ′(s).

3.4 Cartan Equations

Perhaps, the most important contribution to the development of modern
differential geometry, is the work of Cartan, culminating into the famous equa-
tions of structure discussed in this chapter.

First Structure Equation

3.4.1 Theorem Let {ei} be a frame with connection ωij and dual coframe
θi. Then

Θi ≡ dθi + ωij ∧ θj = 0. (3.36)

Proof Let

ei = ∂jA
j
i

be a frame, and let θi be the corresponding coframe. Since θi(ej), we have

θi = (A−1)ijdx
j .

Let X be an arbitrary vector field. Then

∇Xei = ∇X(∂jA
j
i).

ejω
j
i(X) = ∂jX(Aji),

= ∂jd(Aji)(X),

= ek(A−1)kjd(Aji)(X).

ωki(X) = (A−1)kjd(Aji)(X).

Hence,

ωki = (A−1)kjd(Aji),

or, in matrix notation,

ω = A−1dA. (3.37)
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On the other hand, taking the exterior derivative of θi, we find that

dθi = d(A−1)ij ∧ dxj ,

= d(A−1)ij ∧A
j
kθ
k,

dθ = d(A−1)A ∧ θ.

However, since A−1A = I, we have d(A−1)A = −A−1dA = −ω, hence

dθ = −ω ∧ θ. (3.38)

In other words

dθi + ωij ∧ θj = 0.

3.4.2 Example SO(2,R)
Consider the polar coordinates part of the transformation in equation 3.5.

Then the frame equations 3.6 in matrix form are given by:

[
e1, e2

]
=
[
∂
∂x ,

∂
∂y

]cos θ − sin θ

sin θ cos θ

 . (3.39)

Thus, the attitude matrix

A =

cos θ − sin θ

sin θ cos θ

 (3.40)

is a rotation matrix in R2. The set of all such matrices forms a continuous
group ( Lie group) called SO(2,R). In such cases, the matrix

ω = A−1dA (3.41)

in equation 3.37 is called the Maurer-Cartan form of the group. An easy com-
putation shows that for the rotation group SO(2), the connection form is

ω =

 0 −dθ

dθ 0

 . (3.42)

Second Structure Equation

Let θi be a coframe in Rn with connection ωij . Taking the exterior derivative
of the first equation of structure and recalling the properties (2.66), we get

d(dθi) + d(ωij ∧ θj) = 0,

dωij ∧ θj − ωij ∧ dθj = 0.



3.4. CARTAN EQUATIONS 89

Substituting recursively from the first equation of structure, we get

dωij ∧ θj − ωij ∧ (−ωjk ∧ θ
k) = 0,

dωij ∧ θj + ωik ∧ ωkj ∧ θj = 0,

(dωij + ωik ∧ ωkj) ∧ θj = 0,

dωij + ωik ∧ ωkj = 0.

3.4.3 Definition The curvature Ω of a connection ω is the matrix valued
2-form,

Ωij ≡ dωij + ωik ∧ ωkj . (3.43)

3.4.4 Theorem Let θ be a coframe with connection ω in Rn . Then the
curvature form vanishes:

Ω = dω + ω ∧ ω = 0. (3.44)

Proof Given that there is a non-singular matrix A such that θ = A−1dx and
ω = A−1dA, we have

dω = d(A−1) ∧ dA.

On the other hand,

ω ∧ ω = (A−1dA) ∧ (A−1dA),

= −d(A−1)A ∧A−1dA,

= −d(A−1)(AA−1) ∧ dA,
= −d(A−1) ∧ dA.

Therefore, dω = −ω ∧ ω.

There is a slight abuse of the wedge notation here. The connection ω is ma-
trix valued, so the symbol ω ∧ ω is really a composite of matrix and wedge
multiplication.

3.4.5 Example Sphere frame

The frame for spherical coordinates 3.7 in matrix form is

[er, eθ, eφ] =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 .
Hence,

A−1 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 ,
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and

dA =

cos θ cosφdθ − sin θ sinφdφ − sin θ cosφdθ − cos θ sinφdφ − cosφdφ
cos θ sinφdθ + sin θ cosφdφ − sin θ sinφdθ + cos θ cosφdφ − sinφdφ

− sin θ dθ − cos θ dθ 0

 .
Since the ω = A−1dA is antisymmetric, it suffices to compute:

ω1
2 = [− sin2 θ cos2 φ− sin2 θ sin2 φ − cos2 θ] dθ

+ [sin θ cos θ cosφ sinφ− sin θ cos θ cosφ sinφ] dφ,

= −dθ,
ω1

3 = [− sin θ cos2 φ− sin θ sin2 φ] dφ = − sin θ dφ,

ω2
3 = [− cos θ cos2 φ− cos θ sin2 φ] dφ = − cos θ dφ.

We conclude that the matrix-valued connection one form is

ω =

 0 −dθ − sin θ dφ
dθ 0 − cos θ dφ

sin θ dφ cos θ dφ 0

 .
A slicker computation of the connection form can be obtained by a method of
educated guessing working directly from the structure equations. We have that
the dual one forms are:

θ1 = dr,

θ2 = r dθ,

θ3 = r sin θ dφ.

Then

dθ2 = −dθ ∧ dr,
= −ω2

1 ∧ θ1 − ω2
3 ∧ θ3.

So, on a first iteration we guess that ω2
1 = dθ. The component ω2

3 is not nec-
essarily 0 because it might contain terms with dφ. Proceeding in this manner,
we compute:

dθ3 = sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ,
= − sin θ dφ ∧ dr − cos θ dφ ∧ r dθ,
= −ω3

1 ∧ dr ∧ θ1 − ω3
2 ∧ θ2.

Now we guess that ω3
1 = sin θ dφ, and ω3

2 = cos θ dφ. Finally, we insert these
into the full structure equations and check to see if any modifications need to be
made. In this case, the forms we have found are completely compatible with the
first equation of structure, so these must be the forms. The second equations
of structure are much more straight-forward to verify. For example
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dω2
3 = d(− cos θ dφ),

= sin θ dθ ∧ dφ,
= −dθ ∧ (− sin θ dφ),

= −ω2
1 ∧ ω1

3.

Change of Basis

We briefly explore the behavior of the quantities Θi and Ωij under a change

of basis. Let ei be frame in M = Rn with dual forms θi, and let ei be another
frame related to the first frame by an invertible transformation.

ei = ejB
j
i, (3.45)

which we will write in matrix notation as e = eB. Referring back to the
definition of connections (3.17), we introduce the covariant differential ∇ which
maps vectors into vector-valued forms,

∇ : Ω0(M,TM)→ Ω1(M,TM)

given by the formula

∇ei = ej ⊗ ωji
= ejω

j
i

∇e = e ω (3.46)

where, once again, we have simplified the equation by using matrix notation.
This definition is elegant because it does not explicitly show the dependence on
X in the connection (3.17). The idea of switching from derivatives to differen-
tials is familiar from basic calculus. Consistent with equation 3.20, the vector
calculus notation for equation 3.46 would be

dei = ej ω
j
i. (3.47)

However, we point out that in the present context, the situation is much more
subtle. The operator ∇ here maps a vector field to a matrix-valued tensor of
rank

(
1
1

)
. Another way to view the covariant differential is to think of ∇ as an

operator such that if e is a frame, and X a vector field, then ∇e(X) = ∇Xe. If f
is a function, then∇f(X) = ∇Xf = df(X), so that∇f = df . In other words, ∇
behaves like a covariant derivative on vectors, but like a differential on functions.
The action of the covariant differential also extends to the entire tensor algebra,
but we do not need that formalism for now, and we delay discussion to section
6.4 on connections on vector bundles. Taking the exterior differential of (3.45)
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and using (3.46) recursively, we get

∇e = (∇e)B + e(dB)

= e ωB + e(dB)

= eB−1ωB + eB−1dB

= e[B−1ωB +B−1dB]

= e ω

provided that the connection ω in the new frame e is related to the connection
ω by the transformation law, (See 6.62)

ω = B−1ωB +B−1dB. (3.48)

It should be noted than if e is the standard frame ei = ∂i in Rn , then∇e = 0, so
that ω = 0. In this case, the formula above reduces to ω = B−1dB, showing that
the transformation rule is consistent with equation (3.37). The transformation
law for the curvature forms is,

Ω = B−1ΩB. (3.49)

A quantity transforming as in 3.49 is said to be a tensorial form of adjoint type.

3.4.6 Example Suppose that B is a change of basis consisting of a rotation
by an angle θ about e3. The transformation is a an isometry that can be
represented by the orthogonal rotation matrix

B =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.50)

Carrying out the computation for the change of basis 3.48, we find:

ω1
2 = ω1

2 − dθ,
ω1

3 = cos θ ω1
3 + sin θ ω2

3,

ω2
3 = − sin θ ω1

3 + cos θ ω2
3. (3.51)

The B−1dB part of the transformation only affects the ω1
2 term, and the effect

is just adding dθ much like the case of the Maurer-Cartan form for SO(2) above.



Chapter 4

Theory of Surfaces

4.1 Manifolds

4.1.1 Definition A coordinate chart or coordinate patch in M ⊂ R3 is a
differentiable map x from an open subset V of R2 onto a set U ⊂M.

x : V ⊂ R2 −→ R3

(u, v)
x7−→ (x(u, v), y(u, v), z(u, v)) (4.1)

Each set U = x(V ) is called a coordinate neighborhood of M . We require that

Fig. 4.1: Surface

the Jacobian of the map has maximal rank. In local coordinates, a coordinate
chart is represented by three equations in two variables:

xi = f i(uα), where i = 1, 2, 3, α = 1, 2. (4.2)

It will be convenient to use the tensor index formalism when appropriate, so
that we can continue to take advantage of the Einstein summation convention.
The assumption that the Jacobian J = (∂xi/∂uα) be of maximal rank allows
one to invoke the implicit function theorem. Thus, in principle, one can locally

93
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solve for one of the coordinates, say x3, in terms of the other two, to get an
explicit function

x3 = f(x1, x2). (4.3)

The loci of points in R3 satisfying the equations xi = f i(uα) can also be locally
represented implicitly by an expression of the form

F (x1, x2, x3) = 0. (4.4)

4.1.2 Definition Let Ui and Uj be two coordinate neighborhoods of a point
p ∈ M with corresponding charts x(u1, u2) : Vi −→ Ui ⊂ R3 and y(v1, v2) :
Vj −→ Uj ⊂ R3 with a non-empty intersection Ui∩Uj 6= ∅. On the overlaps, the
maps φij = x−1y are called transition functions or coordinate transformations.
(See figure 4.2 )

Fig. 4.2: Coordinate Charts

4.1.3 Definition A differentiable manifold of dimension 2, is a space M
together with an indexed collection {Uα}α∈I of coordinate neighborhoods sat-
isfying the following properties:

1. The neighborhoods {Uα} constitute an open cover M . That is, if p ∈M ,
then p belongs to some chart.

2. For any pair of coordinate neighborhoods Ui and Uj with Ui ∩ Uj 6= ∅,
the transition maps φij and their inverses are differentiable.

3. An indexed collection satisfying the conditions above is called an atlas.
We require the atlas to be maximal in the sense that it contains all possible
coordinate neighborhoods.

The overlapping coordinate patches represent different parametrizations for the
same set of points in R3. Part (2) of the definition insures that on the overlap,
the coordinate transformations are invertible. Part (3) is included for technical
reasons, although in practice the condition is superfluous. A family of coordi-
nate neighborhoods satisfying conditions (1) and (2) can always be extended to
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a maximal atlas. This can be shown from the fact that M inherits a subspace
topology consisting of open sets which are defined by the intersection of open
sets in R3 with M .

If the coordinate patches in the definition map from Rn to Rm n < m we
say that M is a n-dimensional submanifold embedded in Rm. In fact, one could
define an abstract manifold without the reference to the embedding space by
starting with a topological space M that is locally Euclidean via homeomorphic
coordinate patches and has a differentiable structure as in the definition above.
However, it turns out that any differentiable manifold of dimension n can be
embedded in R2n, as proved by Whitney in a theorem that is beyond the scope
of these notes.

A 2-dimensional manifold embedded in R3 in which the transition func-
tions are C∞, is called a smooth surface. The first condition in the definition
states that each coordinate neighborhood looks locally like a subset of R2. The
second differentiability condition indicates that the patches are joined together
smoothly as some sort of quilt. We summarize this notion by saying that a
manifold is a space that is locally Euclidean and has a differentiable structure,
so that the notion of differentiation makes sense. Of course, Rn is itself an n
dimensional manifold.

The smoothness condition on the coordinate component functions xi(uα)
implies that at any point xi(uα0 + hα) near a point xi(uα0 ) = xi(u0, v0), the
functions admit a Taylor expansion

xi(uα0 + hα) = xi(uα0 ) + hα
(
∂xi

∂uα

)
0

+
1

2!
hαhβ

(
∂2xi

∂uα∂uβ

)
0

+ . . . (4.5)

Since the parameters uα must enter independently, the Jacobian matrix

J ≡
[
∂xi

∂uα

]
=

[
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

]
must have maximal rank. At points where J has rank 0 or 1, there is a singu-
larity in the coordinate patch.

4.1.4 Example Consider the local coordinate chart for the unit sphere ob-
tained by setting r = 1 in the equations for spherical coordinates 2.30

x(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

The vector equation is equivalent to three scalar functions in two variables:

x = sin θ cosφ,

y = sin θ sinφ,

z = cosφ. (4.6)

Clearly, the surface represented by this chart is part of the sphere x2 +y2 +z2 =
1. The chart cannot possibly represent the whole sphere because, although
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a sphere is locally Euclidean, (the earth is locally flat) there is certainly a
topological difference between a sphere and a plane. Indeed, if one analyzes the
coordinate chart carefully, one will note that at the North pole (θ = 0, z = 1,
the coordinates become singular. This happens because θ = 0 implies that
x = y = 0 regardless of the value of φ, so that the North pole has an infinite
number of labels. In this coordinate patch, the Jacobian at the North Pole does
not have maximal rank. To cover the entire sphere, one would need at least
two coordinate patches. In fact, introducing an exactly analogous patch y(u.v)
based on South pole would suffice, as long as in overlap around the equator
functions x−1y, and y−1x are smooth. One could conceive more elaborate
coordinate patches such as those used in baseball and soccer balls.

The fact that it is required to have two parameters to describe a patch on
a surface in R3 is a manifestation of the 2-dimensional nature of the surfaces.
If one holds one of the parameters constant while varying the other, then the
resulting 1-parameter equation describes a curve on the surface. Thus, for ex-
ample, letting φ = constant in equation (4.6), we get the equation of a meridian
great circle.

Fig. 4.3: Bell

4.1.5 Example Surface of revolution
Given a function f(r), the coordinate chart

x(r, φ) = (r cosφ, r sinφ, f(r)) (4.7)

represents a surface of revolution around the z-
axis in which the cross section profile has the
shape of the function. Horizontal cross-sections
are circles of radius r. In figure 4.3, we have cho-
sen the function f(r) = e−r

2

to be a Gaussian, so
the surface of revolution is bell-shaped. A lateral curve profile for φ = π/4 is
shown in black. We should point out that this parametrization of surfaces of
revolution is fairly constraining because of the requirement of z = f(r) to be a
function. Thus, for instance, the parametrization will not work for surfaces of
revolution generated by closed curves. In the next example, we illustrate how
one easily get around this constraint.

4.1.6 Example Torus
Consider the surface of revolution generated by rotating a circle C of radius r
around a parallel axis located a distance R from its center as shown in figure
4.4.
The resulting surface called a torus can be parametrized by the coordinate patch

x(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu). (4.8)

Here the angle u traces points around the z-axis, whereas the angle v traces
points around the circle C. (At the risk of some confusion in notation, (the
parameters in the figure are bold-faced; this is done solely for the purpose
of visibility.) The projection of a point in the surface of the torus onto the
xy-plane is located at a distance (R + r cosu) from the origin. Thus, the x
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Fig. 4.4: Torus

and y coordinates of the point in the torus are just the polar coordinates of
the projection of the point in the plane. The z-coordinate corresponds to the
height of a right triangle with radius r and opposite angle u.

4.1.7 Example Monge patch

Surfaces in R3 are first introduced in vector calculus by a function of two
variables z = f(x, y). We will find it useful for consistency to use the obvious
parametrization called an Monge patch

x(u, v) = (u, v, f(u, v)). (4.9)

4.1.8 Notation Given a parametrization of a surface in a local chart x(u, v) =
x(u1, u2) = x(uα), we will denote the partial derivatives by any of the following
notations:

xu = x1 =
∂x

∂u
, xuu = x11 =

∂2x

∂u2

xv = x2 =
∂x

∂v
, xvv = x22 =

∂2x

∂v2
,

or more succinctly,

xα =
∂x

∂uα
, xαβ =

∂2x

∂uα∂uβ
(4.10)

4.2 The First Fundamental Form

Let xi(uα) be a local parametrization of a surface. Then, the Euclidean
inner product in R3 induces an inner product in the space of tangent vectors
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at each point in the surface. This metric on the surface is obtained as follows:

dxi =
∂xi

∂uα
duα,

ds2 = δijdx
idxj ,

= δij
∂xi

∂uα
∂xj

∂uβ
duαduβ .

Thus,
ds2 = gαβdu

αduβ , (4.11)

where

gαβ = δij
∂xi

∂uα
∂xj

∂uβ
. (4.12)

We conclude that the surface, by virtue of being embedded in R3, inherits
a natural metric (4.11) which we will call the induced metric. A pair {M, g},
where M is a manifold and g = gαβdu

α⊗duβ is a metric is called a Riemannian
manifold if considered as an entity in itself, and a Riemannian submanifold
of Rn if viewed as an object embedded in Euclidean space. An equivalent
version of the metric (4.11) can be obtained by using a more traditional calculus
notation:

dx = xudu+ xvdv

ds2 = dx · dx
= (xudu+ xvdv) · (xudu+ xvdv)

= (xu · xu)du2 + 2(xu · xv)dudv + (xv · xv)dv2.

We can rewrite the last result as

ds2 = Edu2 + 2Fdudv +Gdv2, (4.13)

where

E = g11 = xu · xu
F = g12 = xu · xv

= g21 = xv · xu
G = g22 = xv · xv.

That is
gαβ = xα · xβ =< xα,xβ > .

4.2.1 Definition First fundamental form
The element of arc length,

ds2 = gαβdu
α ⊗ duβ , (4.14)

is also called the first fundamental form.
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We must caution the reader that this quantity is not a form in the sense
of differential geometry since ds2 involves the symmetric tensor product rather
than the wedge product. The first fundamental form plays such a crucial role in
the theory of surfaces that we will find it convenient to introduce a more modern
version. Following the same development as in the theory of curves, consider
a surface M defined locally by a function q = (u1, u2) 7−→ p = α(u1, u2). We
say that a quantity Xp is a tangent vector at a point p ∈ M if Xp is a linear
derivation on the space of C∞ real-valued functions F = {f |f : M −→ R} on
the surface. The set of all tangent vectors at a point p ∈M is called the tangent
space TpM . As before, a vector field X on the surface is a smooth choice of a
tangent vector at each point on the surface and the union of all tangent spaces
is called the tangent bundle TM . Sections of the tangent bundle of M are
consistently denoted by X (M). The coordinate chart map α : R2 −→ M ⊂
R3 induces a push-forward map α∗ : TR2 −→ TM which maps a vector V at
each point in Tq(R

2) into a vector Vα(q) = α∗(Vq) in Tα(q)M , as illustrated in
the diagram 4.5

Fig. 4.5: Push-Forward

The action of the push-forward is defined by

α∗(V )(f) |α(q)= V (f ◦ α) |q . (4.15)

Just as in the case of curves, when we revert back to classical notation to
describe a surface as xi(uα), what we really mean is (xi ◦ α)(uα), where xi are
the coordinate functions in R3 . Particular examples of tangent vectors on M
are given by the push-forward of the standard basis of TR2. These tangent
vectors which earlier we called xα are defined by

α∗(
∂

∂uα
)(f) |α(uα)=

∂

∂uα
(f ◦ α) |uα .

In this formalism, the first fundamental form I is just the symmetric bilinear
tensor defined by the induced metric,

I(X,Y ) = g(X,Y ) =< X,Y >, (4.16)

where X and Y are any pair of vector fields in X (M).

Orthogonal Parametric Curves

Let V and W be vectors tangent to a surface M defined locally by a chart
x(uα). Since the vectors xα span the tangent space of M at each point, the
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vectors V and W can be written as linear combinations,

V = V αxα,

W = Wαxα.

The functions V α and Wα are the curvilinear components of the vectors. We
can calculate the length and the inner product of the vectors using the induced
Riemannian metric as follows:

‖V ‖2 = < V, V >=< V αxα, V
βxβ >= V αV β < xα,xβ >,

‖V ‖2 = gαβV
αV β ,

‖W‖2 = gαβW
αW β ,

and

< V,W > = < V αxα,W
βxβ >= V αW β < xα,xβ >,

= gαβV
αW β .

The angle θ subtended by the vectors V and W is the given by the equation

cos θ =
< V,W >

‖V ‖ · ‖W‖
,

=
I(V,W )√

I(V, V )
√
I(W,W )

,

=
gα1β1

V α1W β1√
gα2β2

V α2V β2

√
gα3β3

Wα3W β3

, (4.17)

where the numerical subscripts are needed for the α and β indices to comply
with Einstein’s summation convention.

Let uα = φα(t) and uα = ψα(t) be two curves on the surface. Then the
total differentials

duα =
dφα

dt
dt, and δuα =

dψα

dt
δt

represent infinitesimal tangent vectors (1.23) to the curves. Thus, the angle
between two infinitesimal vectors tangent to two intersecting curves on the
surface satisfies the equation:

cos θ =
gα1β1du

α1δuβ1√
gα2β2

duα2duβ2

√
gα3β3

δuα3δuβ3

. (4.18)

In particular, if the two curves happen to be the parametric curves, u1 = const.
and u2 =const., then along one curve we have du1 = 0, with du2 arbitrary, and
along the second δu1 is arbitrary and δu2 = 0. In this case, the cosine of the
angle subtended by the infinitesimal tangent vectors reduces to:

cos θ =
g12δu

1du2√
g11(δu1)2

√
g22(du2)2

=
g12

g11g22
=

F√
EG

. (4.19)
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A simpler way to obtain this result is to recall that parametric directions are
given by xu and xv, so

cos θ =
< xu,xv >

‖xu‖ · ‖xv‖
=

F√
EG

. (4.20)

It follows immediately from the equation above that:

4.2.2 Proposition The parametric curves are orthogonal if F = 0.
Orthogonal parametric curves are an important class of curves, because

locally the coordinate grid on the surface is similar to coordinate grids in basic
calculus, such as in polar coordinates for which ds2 = dr2 + r2dθ2.

4.2.3 Examples a) Sphere

x = (a sin θ cosφ, a sin θ sinφ, a cos θ),

xθ = (a cos θ cosφ, a cos θ sinφ,−a sin θ),

xφ = (−a sin θ sinφ, a sin θ cosφ, 0),

E = xθ · xθ = a2,

F = xθ · xφ = 0,

G = xφ · xφ = a2 sin2 θ,

ds2 = a2dθ2 + a2 sin2 θ dφ2. (4.21)

There are many interesting curves on a sphere, but amongst these the lox-
odromes have a special role in history. A loxodrome is a curve that winds
around a sphere making a constant angle with the meridians. In this sense,
it is the spherical analog of a cylindrical helix and as such it is often called a
spherical helix. The curves were significant in early navigation where they are
referred as rhumb lines. As people in the late 1400’s began to rediscover that
earth was not flat, cartographers figured out methods to render maps on flat
paper surfaces. One such technique is called the Mercator projection which is
obtained by projecting the sphere onto a plane that wraps around the sphere
as a cylinder tangential to the sphere along the equator.

As we will discuss in more detail later, a navigator travelling a constant
bearing would be moving on a straight path on the Mercator projection map,
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but on the sphere it would be spiraling ever faster as one approached the poles.
Thus, it became important to understand the nature of such paths. It appears
as if the first quantitative treatise of loxodromes was carried in the mid 1500’s
by the portuguese applied mathematician Pedro Nuñes, who was chair of the
department at the University of Coimbra.

As an application, we will derive the equations of loxodromes and compute
the arc length. A general spherical curve can be parametrized in the form
γ(t) = x(θ(t), φ(t)). Let σ be the angle the curve makes with the meridians
φ = constant. Then, recalling that < xθ,xφ >= F = 0, we have:

γ′ = xθ
dθ

dt
+ xφ

dφ

dt
.

cosσ =
< xθ, γ

′ >

‖xθ‖ · ‖γ′‖
=

E dθ
dt√
E ds
dt

= a
dθ

ds
.

a2dθ2 = cos2 σ ds2,

a2 sin2 σ dθ2 = a2 cos2 σ sin2 θ dφ2,

sinσ dθ = ± cosσ sin θ dφ,

csc θ dθ = ± cotσ dφ.

The convention used by cartographers, is to measure the angle θ from the equa-
tor. To better adhere to the history, but at the same time avoiding confusion, we
replace θ with ϑ = π

2 −θ, so that ϑ = 0 corresponds to the equator. Integrating
the last equation with this change, we get

secϑ dϑ = ± cotσ dφ

ln tan(ϑ2 + π
4 ) = ± cotσ(φ− φ0).

Thus, we conclude that the equations of loxodromes and their arc lengths are
given by

φ = ±(tanσ) ln tan(ϑ2 + π
4 ) + φ0 (4.22)

s = a(θ − θ0) secσ, (4.23)

where θ0 and φ0 are the coordinates of the initial position. Figure 4.2 shows
four loxodromes equally distributed around the sphere.

Loxodromes were the bases for a number of beautiful drawings and woodcuts
by M. C. Escher. figure 4.2 also shows one more beautiful manifestation of
geometry in nature in a plant called Aloe Polyphylla. Not surprisingly, the
plant has 5 loxodromoes which is a Fibonacci number. We will show later un-
der the discussion of conformal (angle preserving) maps in section 5.2.2, that
loxodromes map into straight lines making a constant angle with meridians in
the Mercator projection (See Figure 5.9).

b) Surface of Revolution
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x = (r cos θ, r sin θ, f(r)),

xr = (cos θ, sin θ, f ′(r)),

xθ = (−r sin θ, r cos θ, 0),

E = xr · xr = 1 + f ′2(r),

F = xr · xθ = 0,

G = xθ · xθ = r2,

ds2 = [1 + f ′2(r)]dr2 + r2dθ2.

As in figure 4.6, we have chosen a Gaussian profile to illustrate a surface of
revolution. Since F = 0 the parametric lines are orthogonal. The picture shows
that this is indeed the case. At any point of the surface, the analogs of meridi-
ans and parallels intersect at right angles.

Fig. 4.6: Surface of Revolution and Pseudosphere

c) Pseudosphere

x = (a sinu cos v, a sinu sin v, a(cosu+ ln(tan
u

2
)),

E = a2 cot2 u,

F = = 0

G = a2 sin2 u,

ds2 = a2 cot2 u du2 + a2 sin2 u dv2.

The pseudosphere is a surface of revolution in which the profile curve is a trac-
trix. The tractrix curve was originated by a problem posed by Leibnitz to the
effect of finding the path traced by a point initially placed on the horizontal
axis at a distance a from the origin, as it was pulled along the vertical axis by a
taught string of constant length a, as shown in figure 4.6. The tractrix was later
studied by Huygens in 1692. Colloquially this is the path of a reluctant dog
at (a, 0) dragged by a man walking up the z-axis. The tangent segment is the
hypothenuse of a right triangle with base x and height

√
a2 − x2, so the slope
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is dz/dx = −
√
a2 − x2/x. Using the trigonometric substitution x = a sinu, we

get z = a
∫

(cos2 u/ sinu) du, which leads to the appropriate form for the profile
of the surface of revolution. The pseudosphere was studied by Beltrami in 1868.
He discovered that in spite of the surface extending asymptotically to infinity,
the surface area is finite with S = 4πa2 as in a sphere of the same radius, and
the volume enclosed is half that sphere. We will have much more to say about
this surface.

Fig. 4.7: Examples of Surfaces

d) Torus

x = ((b+ a cosu) cos v, (b+ a cosu) sin v, a sinu) (See 4.8),

E = a2,

F = 0,

G = (b+ a cosu)2,

ds2 = a2du2 + (b+ a cosu)2dv2. (4.24)

e) Helicoid

x = (u cos v, u sin v, av) Coordinate curves u = c. are helices.

E = 1,

F = 0,

G = u2 + a2,

ds2 = du2 + (u2 + a2)dv2. (4.25)

f) Catenoid

x = (u cos v, u sin v, c cosh−1 u

c
), This is a catenary of revolution.

E =
u2

u2 − c2
,

F = 0,

G = u2,

ds2 =
u2

u2 − c2
du2 + u2dv2, (4.26)



4.2. THE FIRST FUNDAMENTAL FORM 105

g) Cone and Conical Helix
The equation z2 = cot2 α(x2 + y2), represents a circular cone whose generator
makes an angle α with the z-axis. In parametric form,

x = (r cosφ, r sinφ, r cotα),

E = csc2 α,

F = 0,

G = r2,

ds2 = csc2 α dr2 + r2dφ2. (4.27)

A conical helix is a curve γ(t) = x(r(t), φ(t)), that makes a constant angle σ
with the generators of the cone. Similar to the case of loxodromes, we have

γ′ = xr
dr

dt
+ xφ

dφ

dt
.

cosσ =
< xr, γ

′ >

‖xr‖ · ‖γ′‖
=

E dr
dt√
E ds
dt

=
√
E
dr

ds
.

E dr2 = cos2 σ ds2,

csc2 α dr2 = cos2 σ(csc2 α dr2 + r2dφ2),

csc2 α sin2 σ dr2 = r2 cos2 σ dφ2,

1

r
dr = cotσ sinα dφ.

Therefore, the equations of a conical helix are given by

r = c ecotσ sinαφ. (4.28)

As shown in figure 4.8, a conical helix projects into the plane as a logarithmic
spiral. Many sea shells and other natural objects in nature exhibit neatly such
conical spirals. The picture shown here is that of lobatus gigas or caracol pala,
previously known as strombus gigas. The particular one is included here with
certain degree of nostalgia, for it has been a decorative item for decades in our
family. The shell was probably found in Santa Cruz del Islote, Archipelago de
San Bernardo, located in the Gulf of Morrosquillo in the Caribbean coast of
Colombia. In this densely populated island paradise, which then enjoyed the
pulchritude of enchanting coral reefs, the shells are now virtually extinct as the
coral has succumbed to bleaching with rising temperatures of the waters. The
shell shows a cut in the spire which the island natives use to sever the columellar
muscle and thus release the edible snail.
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Fig. 4.8: Conical Helix.

4.3 The Second Fundamental Form

Let x = x(uα) be a coordinate patch on a surface M . Since xu and xv are
tangential to the surface, we can construct a unit normal n to the surface by
taking

n =
xu × xv
‖xu × xv‖

. (4.29)

Fig. 4.9: Surface Normal

Now, consider a curve on the surface given by uβ = uβ(s). Without loss
of generality, we assume that the curve is parametrized by arc length s so
that the curve has unit speed. Let e = {T,N,B} be the Frenet frame of the
curve. Recall that the rate of change ∇TW of a vector field W along the curve
correspond to the classical vector w′ = dw

ds , so ∇W is associated with the vector

dw. Thus the connection equation ∇e = eω is given by

d[T,N,B] = [T,N,B]

 0 −κ ds 0
κ ds 0 −τ ds

0 τ ds 0.

 (4.30)

Following ideas first introduced by Darboux and subsequently perfected by
Cartan, we introduce a new orthonormal frame f = {T,g,n, } adapted to the
surface, where at each point, T is the common tangent to the surface and to
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the curve on the surface, n is the unit normal to the surface and g = n × T.
Since the two orthonormal frames must be related by a rotation that leaves the
T vector fixed, we have f = eB, where B is a matrix of the form

B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (4.31)

We wish to find ∇f = f ω. A short computation using the change of basis
equations ω = B−1ωB +B−1dB (see equations 3.48 and 3.51) gives:

d[T,g,n] = [T,g,n]

 0 −κ cos θ ds −κ sin θ ds
κ cos θ ds 0 −τ ds+ dθ
κ sin θ ds τ ds− dθ 0

 , (4.32)

= [T,g,n]

 0 −κg ds −κn ds
κg ds 0 −τg ds
κn ds τg ds 0

 , (4.33)

where:

κn = κ sin θ is called the normal curvature,

κg = κ cos θ is called the geodesic curvature; Kg = κgg the geodesic curvature
vector, and

τg = τ − dθ/ds is called the geodesic torsion.

We conclude that we can decompose T′ and the curvature κ into their
normal and surface tangent space components (see figure 4.10)

T′ = κnn + κgg, (4.34)

κ2 = κ2
n + κ2

g. (4.35)

The normal curvature κn measures the curvature of x(uα(s)) resulting from the
constraint of the curve to lie on a surface. The geodesic curvature κg measures
the “sideward” component of the curvature in the tangent plane to the surface.
Thus, if one draws a straight line on a flat piece of paper and then smoothly
bends the paper into a surface, the line acquires some curvature. Since the line
was originally straight, there is no sideward component of curvature so κg = 0
in this case. This means that the entire contribution to the curvature comes
from the normal component, reflecting the fact that the only reason there is
curvature here is due to the bend in the surface itself. In this sense, a curve on a
surface for which the geodesic curvature vanishes at all points reflects locally the
shortest path between two points. These curves are therefore called geodesics
of the surface. The property of minimizing the path between two points is a
local property. For example, on a sphere one would expect the geodesics to be
great circles. However, travelling from Los Angeles to San Francisco along one
such great circle, there is a short path and a very long one that goes around
the earth.
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Fig. 4.10: Curvature

If one specifies a point p ∈M and a direc-
tion vector Xp ∈ TpM , one can geometrically
envision the normal curvature by considering
the equivalence class of all unit speed curves
in M that contain the point p and whose
tangent vectors line up with the direction of
X. Of course, there are infinitely many such
curves, but at an infinitesimal level, all these
curves can be obtained by intersecting the
surface with a “vertical” plane containing the
vector X and the normal to M . All curves in
this equivalence class have the same normal
curvature and their geodesic curvatures vanish. In this sense, the normal cur-
vature is more of a property pertaining to a direction on the surface at a point,
whereas the geodesic curvature really depends on the curve itself. It might be
impossible for a hiker walking on the undulating hills of the Ozarks to find a
straight line trail, since the rolling hills of the terrain extend in all directions. It
might be possible, however, for the hiker to walk on a path with zero geodesic
curvature as long the same compass direction is maintained. We will come back
to the Cartan structure equations associated with the Darboux frame, but for
computational purposes, the classical approach is very practical.
Using the chain rule, we se that the unit tangent vector T to the curve is given
by

T =
dx

ds
=

dx

duα
duα

ds
= xα

duα

ds
. (4.36)

To find an explicit formula for the normal curvature we first differentiate equa-
tion (4.36)

T′ =
dT

ds
,

=
d

ds
(xα

duα

ds
),

=
d

ds
(xα)

duα

ds
+ xα

d2uα

ds2
,

= (
dxα
duβ

duβ

ds
)
duα

ds
+ xα

d2uα

ds2
,

= xαβ
duα

ds

duβ

ds
+ xα

d2uα

ds2
.

Taking the inner product of the last equation with the normal and noticing that
< xα,n >= 0, we get

κn = < T′,n >=< xαβ ,n >
duα

ds

duβ

ds
,

=
bαβdu

αduβ

gαβduαduβ
, (4.37)

where
bαβ =< xαβ ,n > (4.38)
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4.3.1 Definition The expression

II = bαβ du
α ⊗ duβ (4.39)

is called the second fundamental form .

4.3.2 Proposition The second fundamental form is symmetric.
Proof In the classical formulation of the second fundamental form, the proof
is trivial. We have bαβ = bβα, since for a C∞ patch x(uα), we have xαβ = xβα,
because the partial derivatives commute. We will denote the coefficients of the
second fundamental form as follows:

e = b11 =< xuu,n >,

f = b12 =< xuv,n >,

= b21 =< xvu,n >,

g = b22 =< xvv,n >,

so that equation (4.39) can be written as

II = edu2 + 2fdudv + gdv2. (4.40)

It follows that the equation for the normal curvature (4.37) can be written
explicitly as

κn =
II

I
=

edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2
. (4.41)

We should pointed out that just as the first fundamental form can be represented
as

I =< dx, dx >,

we can represent the second fundamental form as

II = − < dx, dn > .

To see this, it suffices to note that differentiation of the identity, < xα,n >= 0,
implies that

< xαβ ,n >= − < xα,nβ > .

Therefore,

< dx, dn > = < xαdu
α,nβdu

β >,

= < xαdu
α,nβdu

β >,

= < xα,nβ > duαduβ ,

= − < xαβ ,n > duαduβ ,

= −II.
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4.3.3 Definition Directions on a surface along which the second fundamental
form

e du2 + 2f du dv + g dv2 = 0 (4.42)

vanishes, are called asymptotic directions, and curves having these directions
are called asymptotic curves. This happens for example when there are straight
lines on the surface, as in the case of the intersection of the saddle z = xy with
the plane z = 0.

For now, we state without elaboration, that one can also define the third fun-
damental form by

III =< dn, dn >=< nα,nβ > duαduβ . (4.43)

From a computational point a view, a more useful formula for the coefficients
of the second fundamental formula can be derived by first applying the classical
vector identity

(A×B) · (C ×D) =

∣∣∣∣ A · C A ·D
B · C B ·D

∣∣∣∣ , (4.44)

to compute

‖xu × xv‖2 = (xu × xv) · (xu × xv),

= det

[
xu · xu xu · xv
xv · xu xv · xv

]
,

= EG− F 2. (4.45)

Consequently, the normal vector can be written as

n =
xu × xv
‖xu × xv‖

=
xu × xv√
EG− F 2

.

It follows that we can write the coefficients bαβ directly as triple products
involving derivatives of (x). The expressions for these coefficients are

e =
(xuxvxuu)√
EG− F 2

,

f =
(xuxvxuv)√
EG− F 2

,

g =
(xuxvxvv)√
EG− F 2

. (4.46)

4.3.4 Example Sphere

Going back to example 4.21, we have:
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xθθ = (a sin θ cosφ,−a sin θ sinφ,−a cos θ),

xθφ = (−a cos θ sinφ, a cos θ cosφ, 0),

xφφ = (−a sin θ cosφ,−a sin θ sinφ, 0),

n = (sin θ cosφ, sin θ sinφ, cos θ),

e = xθθ · n = −a,
f = xθφ · n = 0,

g = xφφ · n = −a sin2 θ,

II =
1

a2
I.

The first fundamental form on a surface measures the square of the distance
between two infinitesimally separated points. There is a similar interpretation
of the second fundamental form as we show below. The second fundamental
form measures the distance from a point on the surface to the tangent plane
at a second infinitesimally separated point. To see this simple geometrical
interpretation, consider a point x0 = x(uα0 ) ∈ M and a nearby point x(uα0 +
duα). Expanding on a Taylor series, we get

x(uα0 + duα) = x0 + (x0)αdu
α +

1

2
(x0)αβdu

αduβ + . . . .

We recall that the distance formula from a point x to a plane which contains
x0 is just the scalar projection of (x−x0) onto the normal. Since the normal to
the plane at x0 is the same as the unit normal to the surface and < xα,n >= 0,
we find that the distance D is

D = < x− x0,n >,

=
1

2
< (x0)αβ ,n > duαduβ ,

=
1

2
II0.

The first fundamental form (or, rather, its determinant) also appears in calculus
in the context of calculating the area of a parametrized surface. If one considers
an infinitesimal parallelogram subtended by the vectors xudu and xvdv, then
the differential of surface area is given by the length of the cross product of
these two infinitesimal tangent vectors. That is,

dS = ‖xu × xv‖ dudv,

S =

∫ ∫ √
EG− F 2 dudv.

The second fundamental form contains information about the shape of the
surface at a point. For example, the discussion above indicates that if b =
|bαβ | = eg − f2 > 0 then all the neighboring points lie on the same side of the
tangent plane, and hence, the surface is concave in one direction. If at a point
on a surface b > 0, the point is called an elliptic point, if b < 0, the point is
called hyperbolic or a saddle point, and if b = 0, the point is called parabolic.
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4.4 Curvature

The concept of curvature and its relation to the fundamental forms, con-
stitute the central object of study in differential geometry. One would like to
be able to answer questions such as “what quantities remain invariant as one
surface is smoothly changed into another?” There is certainly something in-
trinsically different between a cone, which we can construct from a flat piece
of paper, and a sphere, which we cannot. What is it that makes these two
surfaces so different? How does one calculate the shortest path between two
objects when the path is constrained to lie on a surface?

These and questions of similar type can be quantitatively answered through
the study of curvature. We cannot overstate the importance of this subject;
perhaps it suffices to say that, without a clear understanding of curvature,
there would be no general theory of relativity, no concept of black holes, and
even more disastrous, no Star Trek.

The notion of curvature of a hypersurface in Rn (a surface of dimension n−
1) begins by studying the covariant derivative of the normal to the surface. If the
normal to a surface is constant, then the surface is a flat hyperplane. Variations
in the normal are indicative of the presence of curvature. For simplicity, we
constrain our discussion to surfaces in R3, but the formalism we use is applicable
to any dimension. We will also introduce in the modern version of the second
fundamental form.

4.4.1 Classical Formulation of Curvature

The normal curvature κn at any point on a surface measures the deviation
from flatness as one moves along a direction tangential to the surface at that
point. The direction can be taken as the unit tangent vector to a curve on
the surface. We seek the directions in which the normal curvature attains the
extrema. For this purpose, let the curve on the surface be given by v = v(u)
and let λ = dv

du. Then we can write the normal curvature 4.41 in the form

κn =
II∗

I∗
=

e+ 2fλ+ gλ2

E + 2Fλ+Gλ2
, (4.47)

where II∗ and I∗ are the numerator and denominator respectively. To find the
extrema, we take the derivative with respect to λ and set it equal to zero. The
resulting fraction is zero only when the numerator is zero, so from the quotient
rule we get

I∗(2f + 2gλ)− II∗(2F + 2Gλ) = 0.

It follows that,

κn =
II∗

I∗
=

f + gλ

F +Gλ
. (4.48)

On the other hand, combining with equation 4.47 we have,

κn =
(e+ fλ) + λ(f + gλ)

(E + Fλ) + λ(F +Gλ)
=

f + gλ

F +Gλ
.
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This can only happen if

κn =
f + gλ

F +Gλ
=

e+ fλ

E + Fλ
. (4.49)

Equation 4.49 contains a wealth of information. On one hand, we can eliminate
κn which leads to the quadratic equation for λ

(Fg − gF )λ2 + (Eg −Ge)λ+ (Ef − Fe) = 0.

Recalling that λ = dv/du, and noticing that the coefficients resemble minors of
a 3× 3 matrix, we can elegantly rewrite the equation as∥∥∥∥∥∥

du2 −du dv dv2

E F G
e f g

∥∥∥∥∥∥ = 0. (4.50)

Equation 4.50 determines two directions du
dv along which the normal curvature

attains the extrema, except for special cases when either bαβ = 0, or bαβ and
gαβ are proportional, which would cause the determinant to be identically zero.
These two directions are called principal directions of curvature, each associated
with an extremum of the normal curvature. We will have much more to say
about these shortly.

On the other hand, we can write equations 4.49 in the form{
(e− Eκn) + λ(f − Fκn) = 0,

(f − Fκn) + λ(g −Gκn) = 0.

Solving each equation for λ we can eliminate λ instead, and we are lead to a
quadratic equation for κn which we can write as∥∥∥∥e− Eκn f − Fκn

f − Fκn g −Gκn

∥∥∥∥ = 0. (4.51)

It is interesting to note that equation 4.51 can be written as∥∥∥∥[e f
f g

]
− κn

[
E F
F G

]∥∥∥∥ = 0.

In other words, the extrema for the values of the normal are the solutions of
the equation

‖bαβ − κngαβ‖ = 0. (4.52)

Had it been the case that gαβ = δαβ , the reader would recognize this as a
eigenvalue equation for a symmetric matrix giving rise to two invariants, that
is, the trace and the determinant of the matrix. We will treat this formally in
the next section. The explicit quadratic expression for the extrema of κn is

(EG− F 2)κ2
n − (Eg − 2Ff +Ge)κn + (eg − f2) = 0.
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We conclude there are two solutions κ1 and κ2 such that

K = κ1κ2 =
eg − f2

EG− F 2
, (4.53)

and

M = 1
2 (κ1 + κ2) =

1

2

Eg − 2Ff +Ge

EF −G2
.. (4.54)

The quantity K is called the Gaussian curvature and M is called the mean
curvature. To understand better the deep significance of the last two equations,
we introduce the modern formulation which will allow is to draw conclusions
from the inextricable connection of these results with the linear algebra spectral
theorem for symmetric operators.

4.4.2 Covariant Derivative Formulation of Curvature

4.4.1 Definition Let X be a vector field on a surface M in R3 and let N
be the normal vector. The map L, given by

LX = −∇XN, (4.55)

is called the Weingarten map. Some authors call this the shape operator. The
same definition applies if M is an n-dimensional hypersurface in Rn+1.

Here, we have adopted the convention to overline the operator ∇ when it
refers to the ambient space. The Weingarten map is natural to consider, since it
represents the rate of change of the normal in an arbitrary direction tangential
to the surface, which is what we wish to quantify.

4.4.2 Definition The Lie bracket [X,Y ] of two vector fields X and Y on a
surface M is defined as the commutator,

[X,Y ] = XY − Y X, (4.56)

meaning that if f is a function on M , then [X,Y ](f) = X(Y (f))− Y (X(f)).

4.4.3 Proposition The Lie bracket of two vectors X,Y ∈X (M) is another
vector in X (M).
Proof If suffices to prove that the bracket is a linear derivation on the space
of C∞ functions. Consider vectors X,Y ∈X (M) and smooth functions f, g in
M . Then,

[X,Y ](f + g) = X(Y (f + g))− Y (X(f + g)),

= X(Y (f) + Y (g))− Y (X(f) +X(g)),

= X(Y (f))− Y (X(f)) +X(Y (g))− Y (X(g)),

= [X,Y ](f) + [X,Y ](g),
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and

[X,Y ](fg) = X(Y (fg))− Y (X(fg)),

= X[fY (g) + gY (f)]− Y [fX(g) + gX(f)],

= X(f)Y (g) + fX(Y (g)) +X(g)Y (f) + gX(Y (f)),

−Y (f)X(g)− f(Y (X(g))− Y (g)X(f)− gY (X(f)),

= f [X(Y (g))− (Y (X(g))] + g[X(Y (f))− Y (X(f))],

= f [X,Y ](g) + g[X,Y ](f).

4.4.4 Proposition The Weingarten map is a linear transformation on X (M).
Proof Linearity follows from the linearity of ∇, so it suffices to show that
L : X −→ LX maps X ∈ X (M) to a vector LX ∈ X (M). Since N is the
unit normal to the surface, < N,N >= 1, so any derivative of < N,N > is 0.
Assuming that the connection is compatible with the metric,

∇X < N,N > = < ∇XN,> + < N,∇XN >,

= 2 < ∇XN,N >,

= 2 < −LX,N >= 0.

Therefore, LX is orthogonal to N ; hence, it lies in X (M).
In the preceding section, we gave two equivalent definitions < dx, dx >,

and < X,Y > of the first fundamental form. We will now do the same for the
second fundamental form.

4.4.5 Definition The second fundamental form is the bilinear map

II(X,Y ) =< LX,Y > . (4.57)

4.4.6 Remark The two definitions of the second fundamental form are con-
sistent. This is easy to see if one chooses X to have components xα and Y
to have components xβ . With these choices, LX has components −na and
II(X,Y ) becomes bαβ = − < xα,nβ >.

We also note that there is a third fundamental form defined by

III(X,Y ) =< LX,LY >=< L2X,Y > . (4.58)

In classical notation, the third fundamental form would be denoted by <
dn, dn >. As one would expect, the third fundamental form contains third
order Taylor series information about the surface.

4.4.7 Definition The torsion of a connection ∇ is the operator T such that
∀X,Y,

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (4.59)
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A connection is called torsion-free if T (X,Y ) = 0. In this case,

∇XY −∇YX = [X,Y ].

We will elaborate later on the importance of torsion-free connections. For the
time being, it suffices to assume that for the rest of this section, all connections
are torsion-free. Using this assumption, it is possible to prove the following
important theorem.

4.4.8 Theorem The Weingarten map is a self-adjoint endomorphism on
X (M).
Proof We have already shown that L : X M −→ X M is a linear map.
Recall that an operator L on a linear space is self-adjoint if < LX, Y >=<
X,LY >, so the theorem is equivalent to proving that the second fundamental
form is symmetric (II[X,Y ] = II[Y,X]). Computing the difference of these
two quantities, we get

II(X,Y )− II(Y,X) = < LX,Y > − < LY,X >,

= < −∇XN,Y > − < −∇YN,X > .

Since < X,N >=< Y,N >= 0 and the connection is compatible with the
metric, we know that

< −∇XN,Y > = < N,∇XY >,

< −∇YN,X > = < N,∇YX >,

hence,

II(X,Y )− II(Y,X) = < N,∇YX > − < N,∇XY >,

= < N,∇YX −∇XY >,

= < N, [X,Y ] >,

= 0 (iff [X,Y ] ∈ T (M)).

The central theorem of linear algebra is the spectral theorem. In the case of
real, self-adjoint operators, the spectral theorem states that given the eigenvalue
equation for a symmetric operator

LX = κX, (4.60)

on a vector space with a real inner product, the eigenvalues are always real and
eigenvectors corresponding to different eigenvalues are orthogonal. Here, the
vector spaces in question are the tangent spaces at each point of a surface in R3,
so the dimension is 2. Hence, we expect two eigenvalues and two eigenvectors:

LX1 = κ1X1 (4.61)

LX2 = κ2X2. (4.62)

4.4.9 Definition The eigenvalues κ1 and κ2 of the Weingarten map L are
called the principal curvatures and the eigenvectors X1 and X2 are called the
principal directions.
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Several possible situations may occur, depending on the classification of the
eigenvalues at each point p on a given surface:

1. If κ1 6= κ2 and both eigenvalues are positive, then p is called an elliptic
point.

2. If κ1κ2 < 0, then p is called a hyperbolic point.

3. If κ1 = κ2 6= 0, then p is called an umbilic point.

4. If κ1 κ2 = 0, then p is called a parabolic point.

It is also known from linear algebra, that in a vector space of dimension two,
the determinant and the trace of a self-adjoint operator are the only invari-
ants under an adjoint (similarity) transformation. Clearly, these invariants are
important in the case of the operator L, and they deserve special names. In
the case of a hypersurface of n-dimensions, there would n eigenvalues, counting
multiplicities, so the classification of the points would be more elaborate

4.4.10 Definition The determinant K = det(L) is called the Gaussian cur-
vature of M and H = 1

2Tr(L) is called the mean curvature .
Since any self-adjoint operator is diagonalizable and in a diagonal basis the

matrix representing L is diag(κ1, κ2), if follows immediately that

K = κ1κ2,

H =
1

2
(κ1 + κ2). (4.63)

An alternative definition of curvature is obtained by considering the unit
normal as a map N : M → S2, which maps each point p on the surface M , to
the point on the sphere corresponding to the position vector Np. The map is
called the Gauss map.

4.4.11 Examples

1. The Gauss map of a plane is constant. The image is a single point on S2.

2. The image of the Gauss map of a circular cylinder is a great circle on S2.

3. The Gauss map of the top half of a circular cone sends all points on the
cone into a circle. We may envision this circle as the intersection of the
cone and a unit sphere centered at the vertex.

4. The Gauss map of a circular hyperboloid of one sheet misses two an-
tipodal spherical caps with boundaries corresponding to the circles of the
asymptotic cone.

5. The Gauss map of a catenoid misses two antipodal points.

The Weingarten map is minus the derivative N∗ = dN of the Gauss map. That
is, LX = −N∗(X).
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4.4.12 Proposition Let X and Y be any linearly independent vectors in
X (M). Then

LX × LY = K(X × Y ),

(LX × Y ) + (X × LY ) = 2H(X × Y ). (4.64)

Proof Since LX,LY ∈ X (M), they can be expressed as linear combinations
of the basis vectors X and Y .

LX = a1X + b1Y,

LY = a2X + b2Y.

computing the cross product, we get

LX × LY =

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣X × Y,
= det(L)(X × Y ).

Similarly

(LX × Y ) + (X × LY ) = (a1 + b2)(X × Y ),

= Tr(L)(X × Y ),

= (2H)(X × Y ).

4.4.13 Proposition

K =
eg − f2

EG− F 2
,

H =
1

2

Eg − 2Ff + eG

EG− F 2
. (4.65)

Proof Starting with equations (4.64), take the inner product of both sides
with X × Y and use the vector identity (4.44). We immediately get

K =

∣∣∣∣ < LX,X > < LX, Y >
< LY,X > < LX,X >

∣∣∣∣∣∣∣∣ < X,X > < X,Y >
< Y,X > < Y, Y >

∣∣∣∣ , (4.66)

2H =

∣∣∣∣ < LX,X > < LX, Y >
< Y,X > < Y, Y >

∣∣∣∣+

∣∣∣∣ < X,X > < X,Y >
< LY,X > < LY, Y >

∣∣∣∣∣∣∣∣ < X,X > < X,Y >
< Y,X > < Y, Y >

∣∣∣∣ . (4.67)

The result follows by taking X = xu and Y = xv. Not surprisingly, this is
in complete agreement with the classical formulas for the Gausssian curvature
(equation 4.53) and for the mean curvature (equation 4.54.
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If we denote by g and b the matrices of the fundamental forms whose compo-
nents are gαβ and bαβ respectively, we can write the equations for the curvatures
as:

K = det

(
b

g

)
= det(g−1b), (4.68)

2H = Tr

(
b

g

)
= Tr(g−1b) (4.69)

4.4.14 Example Sphere

From equations 4.21 and 4.3 we see that K = 1/a2 and H = 1/a. This is totally
intuitive since one would expect κ1 = κ2 = 1/a because the normal curvature
in any direction should equal the curvature of great circle. This means that
a sphere is a surface of constant curvature and every point of a sphere is an
umbilic point. This is another way to think of the symmetry of the sphere in
the sense that an observer at any point sees the same normal curvature in all
directions.

The next theorem due to Euler gives a characterization of the normal curvature
in the direction of an arbitrary unit vector X tangent to the surface M at a
given point.

4.4.15 Theorem (Euler) Let X1 and X2 be unit eigenvectors of L and let
X = (cos θ)X1 + (sin θ)X2. Then

II(X,X) = κ1 cos2 θ + κ2 sin2 θ. (4.70)

Proof Simply compute II(X,X) =< LX,X >, using the fact the LX1 =
κ1X1 , LX2 = κ2X2, and noting that the eigenvectors are orthogonal. We get

< LX,X > = < (cos θ)κ1X1 + (sin θ)κ2X2, (cos θ)X1 + (sin θ)X2 >

= κ1 cos2 θ < X1, X1 > +κ2 sin2 θ < X2, X2 >

= κ1 cos2 θ + κ2 sin2 θ.

4.4.16 Theorem The first, second and third fundamental forms satisfy the
equation

III − 2H II +KI = 0 (4.71)

Proof The proof follows immediately from the fact that for a symmetric 2
by 2 matrix A, the characteristic polynomial is κ2 − tr(A)κ+ det(A) = 0, and
from the Cayley-Hamilton theorem stating that the matrix is annihilated by its
characteristic polynomial.
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Fig. 4.11: Surface Frame.

4.5 Fundamental Equations

4.5.1 Gauss-Weingarten Equations

As we have just seen for example, the Gaussian curvature of sphere of radius
a is 1/a2. To compute this curvature we had to first compute the coefficients
of the second fundamental form, and therefore, we first needed to compute
the normal to the surface in R3. The computation therefore depended on the
particular coordinate chart parametrizing the surface.

However, it would reasonable to conclude that the curvature of the sphere
is an intrinsic quantity, independent of the embedding in R3. After all, a
“two-dimensional” creature such as ant moving on the surface of the sphere
would be constrained by the curvature of the sphere independent of the higher
dimension on which the surface lives. This mode of thinking lead the brilliant
mathematicians Gauss and Riemann to question if the coefficients of the second
fundamental form were functionally computable from the coefficients of the first
fundamental form. To explore this idea, consider again the basis vectors at each
point of a surface consisting of two tangent vectors and the normal, as shown in
figure 4.11. Given a coordinate chart x(uα), the vectors xα live on the tangent
space, but this is not necessarily true for the second derivative vectors xαβ .
Here, x(uα) could refer to a coordinate patch in any number of dimensions, so
all the tensor index formulas that follow, apply to surfaces of codimension 1
in Rn. The set of vectors {xα,n} constitutes a basis for Rn at each point on
the surface, we can express the vectors xαβ as linear combinations of the basis
vectors. Therefore, there exist coefficients Γγαβ and cαβ such that,

xαβ = Γγαβxγ + cαβn. (4.72)

Taking the inner product of equation 4.72 with n, noticing that the latter is a
unit vector orthogonal to xγ , we find that cαβ =< xαβ ,n >, and hence these are
just the coefficients of the second fundamental form. In other words, equation
4.72 can be written as

xαβ = Γγαβxγ + bαβn. (4.73)

Equation 4.73 together with equation 4.76 below, are called the formulæ of
Gauss. The covariant derivative formulation of the equation of Gauss follows
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in a similar fashion. Let X and Y be vector fields tangent to the surface. We
decompose the covariant derivative of Y in the direction of X into its tangential
and normal components

∇XY = ∇XY + h(X,Y )N.

But then,

h(X,Y ) =< ∇XY,N >,

= − < Y,∇XN >,

= − < Y,LX,>,

= − < LX,Y >,

= II(X,Y ).

Thus, the coordinate independent formulation of the equation of Gauss reads

∇XY = ∇XY + II(X,Y )N. (4.74)

The quantity ∇XY represents a covariant derivative on the surface, so in that
sense, it is intrinsic to the surface. If α(s) is a curve on the surface with tangent
T = α′(s), we say that a vector field Y is parallel-transported along the curve
if ∇TY = 0. This notion of parallelism refers to parallelism on the surface, not
the ambient space. To illustrate by example, Figure 4.12 shows a vector field
Y tangent to a sphere along the circle with azimuthal angle θ = π/3. The
circle has unit tangent T = α′(s), and at each point on the circle, the vector Y
points North. To the inhabitants of the sphere, the vector Y appears parallel-
transported on the surface along the curve, that is ∇TY = 0. However, Y is
clearly not parallel-transported in the ambient R3 space with respect to the
connection ∇.

Fig. 4.12:

The torsion T of the connection ∇ is defined exactly
as before (See equation 4.59).

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Also, as in definition 3.14, the connection is compat-
ible with the metric on the surface if

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > .

A torsion-free connection that is compatible with the
metric is called a Levi-Civita connection.

4.5.1 Proposition A Levi-Civita connection preserves length and angles
under parallel transport.

Proof Let T = α′(t) be tangent to curve α(T ), and X and Y be parallel-
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transported along α. By definition, ∇TX = ∇TY = 0. Then

∇T < X,X > =< ∇TX,X > + < X,∇TX >,

= 2 < ∇TX,X >= 0,

⇒ ‖X‖ = constant.

∇T < X,Y > =< ∇TX,Y > + < X,∇TY >= 0,

⇒< X,Y >= constant. So,

cos θ =
< X,Y >

‖X‖ · ‖Y ‖
= constant.

If one takes {eα} to be a basis of the tangent space, the components of the
connection in that basis are given by the familiar equation

∇eαeβ = Γγαβeγ .

The Γ’s here are of course the same Christoffel symbols in the equation of Gauss
4.73. We have the following important result:

4.5.2 Theorem In a manifold {M, g} with metric g, there exists a unique
Levi-Civita connection.

The proof is implicit in the computations that follow leading to equation
4.76, which express the components uniquely in terms of the metric. The entire
equation (4.73) must be symmetric on the indices αβ, since xαβ = xβα, so
Γγαβ = Γγαβ is also symmetric on the lower indices. These quantities are called
the Christoffel symbols of the first kind. Now we take the inner product with
xσ to deduce that

< xαβ ,xσ > = Γγαβ < xγ ,xσ >,

= Γγαβgγσ,

= Γαβσ;

where we have lowered the third index with the metric on the right hand side
of the last equation. The quantities Γαβσ are called Christoffel symbols of the
second kind. Here we must note that not all indices are created equal. The
Christoffel symbols of the second kind are only symmetric on the first two
indices. The notation Γαβσ = [αβ, σ] is also used in the literature.

The Christoffel symbols can be expressed in terms of the metric by first
noticing that the derivative of the first fundamental form is given by (see equa-
tion 3.34)

gαγ,β =
∂

∂uβ
< xα,xγ >,

=< xαβ ,xγ > + < xα,xγβ , >,

= Γαβγ + Γγβα.
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Taking other cyclic permutations of this equation, we get

gαγ,β = Γαβγ + Γγβα,

gβγ,α = Γαβγ + Γγαβ ,

gαβ,γ = Γαγβ + Γγβα.

Adding the first two and subtracting the third of the equations above, and
recalling that the Γ’s are symmetric on the first two indices, we obtain the
formula

Γαβγ =
1

2
(gαγ,β + gβγ,α − gαβ,γ). (4.75)

Raising the third index with the inverse of the metric, we also have the follow-
ing formula for the Christoffel symbols of the first kind (hereafter, Christoffel
symbols refer to the symbols of the first kind, unless otherwise specified.)

Γσαβ =
1

2
gσγ(gαγ,β + gβγ,α − gαβ,γ). (4.76)

The Christoffel symbols are clearly symmetric in the lower indices

Γσαβ = Γσβα. (4.77)

Unless otherwise specified, a connection on {M, g} refers to the unique Levi-
Civita connection.

We derive a well-known formula for the Christoffel symbols for the case
Γααβ . From 4.76 we have:

Γααβ =
1

2
gαγ(gαγ,β + gβγ,α − gαβ,γ).

On the other hand,
gαγgβγ,α = gαγgαβ,γ

as can be seen by switching the repeated indices of summation α and σ, and
using the symmetry of the metric. The equation reduces to

Γααβ =
1

2
gαγgαγ,β

Let A be the cofactor transposed matrix of g. From the linear algebra formula
for the expansion of a determinant in terms of cofactors we can get an expression
an expression for the inverse of the metric as follows:

det(g) = gαγA
αγ ,

∂ det(g)

∂gαγ
= Aαγ ,

gαγ =
Aαγ

det(g)
,

=
1

det(g)

∂ det(g)

∂gαγ
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so that

Γααβ =
1

2 det(g)

∂ det(g)

∂gαγ

∂

∂uβ
gαγ ,

=
1

2 det(g)

∂

∂uβ
(det(g)). (4.78)

Using this result we can also get a tensorial version of the divergence of the
vector field X = vαeα on the manifold. Using the classical covariant derivative
formula 3.25 for the components vα, we define:

DivX = ∇ ·X = vα‖α (4.79)

We get

DivX = vα,α +Γααγ v
γ ,

=
∂

∂uα
vα +

1

2 det(g)

∂

∂uγ
(det(g))vγ ,

=
1√

det(g)

∂

∂uα
(
√

det(g)vα). (4.80)

If f is a function on the manifold, df = f,β du
β so the contravariant components

of the gradient are

(∇f)α = gαβf,β . (4.81)

Combining with equation above, we get a second order operator

∆f = Div(Gradf),

=
1√

det(g)

∂

∂uα
(
√

det(g)gαβf,β) (4.82)

The quantity ∆ is called the Laplace-Beltrami operator on a function and it
generalizes the Laplacian of functions in Rn to functions on manifolds.

4.5.3 Example Laplacian in Spherical Coordinates
The metric in spherical coordinates is ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2, so

gαβ =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 , gαβ =

1 0 0
0 1

r2 0
0 0 i

r2 sin2 θ

 , √
det(g) = r2 sin θ.

The Laplace-Beltrami formula gives,

∆f =
1√

det g

[
∂

∂u1
(
√

det g g11 ∂f

∂u1
) +

∂

∂u2
(
√

det g g22 ∂f

∂u2
) +

∂

∂u3
(
√

det g g33 ∂f

∂u3
)

]
,

=
1

r2 sin θ

[
∂

∂r
(r2 sin θ

∂f

∂r
) +

∂

∂θ
(r2 sin θ

1

r2

∂f

∂θ
) +

∂

∂φ
(r2 sin θ

1

r2 sin2 θ

∂f

∂φ
)

]
,

=
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.
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The result is the same as the formula for the Laplacian 3.9 found by differential
form methods.

4.5.4 Example
As an example we unpack the formula for Γ1

11. First, note that det(g) =
‖gαβ‖ = EG− F 2. From equation 4.76 we have

Γ1
11 =

1

2
g1γ(g1γ,1 + g1γ,1 − g11,γ),

=
1

2
g1γ(2g1γ,1 − g11,γ),

=
1

2
[g11(2g11,1 − g11,1) + g12(2g12,1 − g11,2)],

=
1

2 det(g)
[GEu − F (2Fu − FEv)],

=
GEu − 2FFu + FEv

2(EG− F 2)
.

Due to symmetry, there are five other similar equations for the other Γ’s. Pro-
ceeding as above, we can derive the entire set.

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

Γ1
12 =

GEv − FGu
2(EG− F 2)

Γ2
12 =

EGu − FEv
2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

Γ2
22 =

EGv − 2FFv + FGu
2(EG− F 2)

. (4.83)

They are a bit messy, but they all simplify considerably for orthogonal systems,
in which case F = 0. Another reason why we like those coordinate systems.

4.5.5 Example Harmonic functions.
A function h on a surface in R3 is called harmonic if it satisfies:

∆ h = 0. (4.84)

Noticing that the matrix components of the inverse of the metric are given by

gαβ =
1

det(g)

[
G −F
−F E

]
(4.85)

we get immediately from 4.82, the classical Laplace-Beltrami equation for sur-
faces,

∆h =
1√

EG− F 2

{
∂

∂u

[
Gh,u−Fh,v√
EG− F 2

]
+

∂

∂v

[
Eh,v −Fh,u√
EG− F 2

]}
= 0. (4.86)
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If the coordinate patch is orthogonal so that F = 0, the equation reduces to:

∂

∂u

[√
G√
E

∂h

∂u

]
+

∂

∂v

[√
E√
G

∂h

∂v

]
= 0 (4.87)

If in addition E = G = λ2 so that the metric has the form,

ds2 = λ2 (du2 + dv2), (4.88)

then,

∆h =
1

λ2

[
∂2h

∂u2
+
∂2h

∂v2

]
. (4.89)

Hence, ∆2h = 0 is equivalent to ∇2h = 0, where ∇2 is the Euclidean Lapla-
cian. (Please compare to the discussion on the isothermal coordinates example
4.5.14.) Two metrics that differ by a multiplicative factor are called conformally
related. The result here means that the Laplacian is conformally invariant un-
der this conformal transformation. This property is essential in applying the
elegant methods of complex variables and conformal mappings to solve physical
problems involving the Laplacian in the plane.

For a surface z = f(x, y), which we can write as a Monge patch x =<
x, y, f(x, y) >, we have E = 1 + f2

x , F = 2fxfy and G = 1 + f2
y=0. A short

computation shows that in this case, the Laplace-Beltrami equation can be
written as, (compare to equation 5.43)

∆h =
1√

1 + f2
x + f2

y

 ∂

∂x

 fx√
1 + f2

x + f2
y

+
∂

∂y

 fy√
1 + f2

x + f2
y

 = 0,

or in terms of the Euclidean R2 del operator ∇ =< ∂
∂x ,

∂
∂y >,

∂

∂x

 fx√
1 + f2

x + f2
y

+
∂

∂y

 fy√
1 + f2

x + f2
y

 = 0,

∇ ·

[
∇f√

1 + ‖∇f‖2

]
= 0. (4.90)

4.5.2 Curvature Tensor, Gauss’s Theorema Egregium

A fascinating set of relations can be obtained simply by equating xβγδ =
xβδγ . First notice that we can also write nα in terms of the frame vectors. This
is by far easier since < n,n >= 1 implies that < nα,n >= 0, so nα lies on the
tangent plane and it is therefore a linear combination the tangent vectors. As
before, we easily verify that the coefficients are the second fundamental form
with a raised index

nα = −bγαxγ . (4.91)
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These are called the formulæ of Weingarten.
Differentiating the equation of Gauss and recursively using the formulas of

Gauss 4.73 and Weingarten 4.91 to write all the components in terms of the
frame, we get

xβδ = Γαβδxα + bβδn,

xβδγ = Γαβδ,γxα + Γαβδxαγ + bβδ,γn + bβδnγ

= Γαβδ,γxα + Γαβδ[Γ
µ
αγxµ + bαγn] + bβδ,γn− bβδbαγxα

xβδγ = [Γαβδ,γ + ΓµβδΓ
α
µγ − bβδbαγ ]xα + [Γαβδbαγ + bβδ,γ ]n, (4.92)

xβγδ = [Γαβγ,δ + ΓµβγΓαµδ − bβγbαδ ]xα + [Γαβγbαδ + bβγ,δ]n. (4.93)

The last equation above was obtained from the preceding one just by permut-
ing δ and γ. Subtracting that last two equations and setting the tangential
component to zero we get

Rαβγδ = bβδb
α
γ − bβγbαδ , (4.94)

where the components of the Riemann tensor R are defined by

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ. (4.95)

Technically we are not justified at this point in calling R a tensor since we have
not established yet the appropriate multi-linear features that a tensor must
exhibit. We address this point in a later chapter. Lowering the index above we
get

Rαβγδ = bβδbαγ − bβγbαδ. (4.96)

4.5.6 Theorema egregium Let M be a smooth surface in R3. Then,

K =
R1212

det(g)
. (4.97)

Proof Let α = γ = 1 and β = δ = 2 above. The equation then reads

R1212 = b22b11 − b21b12,

= (eg − f2),

= K(EF −G2),

= K det(g)

The remarkable result is that the Riemann tensor and hence the Gaussian
curvature does not depend on the second fundamental form but only on the
coefficients of the metric. Thus, the Gaussian curvature is an intrinsic quan-
tity independent of the embedding, so that two surfaces that have the same
first fundamental form have the same curvature. In this sense, the Gaussian
curvature is a bending invariant!
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Setting the normal components equal to zero gives

Γαβδbαγ − Γαβγbαδ + bβδ,γ − bβγ,δ = 0 (4.98)

These are called the Codazzi (or Codazzi-Mainardi) equations.

Computing the Riemann tensor is labor intensive since one must first obtain
all the non-zero Christoffel symbols as shown in the example above. Consid-
erable gain in efficiency results from a form computation. For this purpose,
let {e1, e2, e3} be a Darboux frame adapted to the surface M , with e3 = n.
Let {θ1, θ2, θ3} be the corresponding orthonormal dual basis. Since at every
point, a tangent vector X ∈ TM is a linear combination of {e1, e2}, we see
that θ3(X) = 0 for all such vectors. That is, θ3 = 0 on the surface. As a
consequence, the entire set of the structure equations is

dθ1 = −ω1
2 ∧ θ2, (4.99)

dθ2 = −ω2
1 ∧ θ1, (4.100)

dθ3 = −ω3
1 ∧ θ1 − ω3

2 ∧ θ2 = 0, (4.101)

dω1
2 = −ω1

3 ∧ ω3
2, Gauss Equation (4.102)

dω1
3 = −ω1

2 ∧ ω2
3, Codazzi Equations (4.103)

dω2
3 = −ω2

1 ∧ ω1
3. (4.104)

The key result is the following theorem

4.5.7 Curvature form equations

dω1
2 = K θ1 ∧ θ2, (4.105)

ω1
3 ∧ θ2 + ω2

3 ∧ θ1 = −2H θ1 ∧ θ2. (4.106)

Proof By applying the Weingarten map to the basis vector {e1, e2} of TM ,
we find a matrix representation of the linear transformation:

Le1 = −∇e1e3 = −ω1
3(e1)e1 − ω2

3(e1)e2,

Le2 = −∇e2e3 = −ω1
3(e2)e1 − ω2

3(e2)32.

Recalling that ω is antisymmetric, we find:

K = det(L) = −[ω1
3(e1)ω3

2(e2)− ω1
3(e2)ω3

2(e1)],

= −(ω1
3 ∧ ω3

2)(e1, e2),

= dω1
2(e1, e2).

Hence

dω1
2 = K θ1 ∧ θ2.
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Similarly, recalling that θ1(ej) = δij , we have

(ω1
3 ∧ θ2 + ω3

2 ∧ θ1)(e1, e2) = ω1
3(e1)− ω3

2(e2),

= ω1
3(e1) + ω2

3(e2),

= Tr(L) = −2H.

4.5.8 Definition A point of a surface at which K = 0 is called a planar
point. A surface with K = 0 at all points is called a flat or Gaussian flat
surface. A surface on which H = 0 at all points is called a minimal surface.

4.5.9 Example Sphere Since the first fundamental form is I = a2 dθ2 +
a2 sin2 θ dφ2, we have

θ1 = a dθ,

θ2 = a sin θ dφ,

dθ2 = a cos θ dθ ∧ dφ,
= − cos θ dφ ∧ θ1 = −ω2

1 ∧ θ1,

ω2
1 = cos θ dφ = −ω1

2,

dω1
2 = sin θ dθ ∧ dφ =

1

a2
(a dθ) ∧ (a sin θ dφ),

=
1

a2
θ1 ∧ θ2,

K =
1

a2
.

4.5.10 Example Torus

Using the the parametrization (See 4.24),

x = ((b+ a cos θ) cosφ, (b+ a cos θ) sinφ, a sin θ),

the first fundamental form is

ds2 = a2dθ2 + (b+ a cos θ)2dφ2.
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Thus, we have:

θ1 = a dθ,

θ2 = (b+ a cos θ) dφ,

dθ2 = −a sin θ dθ ∧ dφ,
= sin θ dφ ∧ θ1 = −ω2

1 ∧ θ1,

ω2
1 = − sin θ dφ = −ω1

2,

dω1
2 = cos θ dθ ∧ dφ =

cos θ

a(b+ a cos θ)
(a dθ) ∧ [(a+ b cos θ) dφ],

=
cos θ

a(b+ a cos θ)
θ1 ∧ θ2,

K =
cos θ

a(b+ a cos θ)
.

This result makes intuitive sense.

When θ = 0, the points lie on the outer equator, so K =
1

a(b+ a)
> 0 is the

product of the curvatures of the generating circle and the outer equator circle.
The points are elliptic.

When θ = π/2, the points lie on the top of the torus, so K = 0 . The points
are parabolic.

When θ = π, the points lie on the inner equator, so K =
−1

a(b− a)
< 0 is the

product of the curvatures of the generating circle and the inner equator circle.
The points are hyperbolic.

4.5.11 Example Orthogonal parametric curves

The examples above have the common feature that the parametric curves are
orthogonal and hence F = 0. Using the same method, we can find a general
formula for such cases. Since the first fundamental form is given by

I = Edu2 +Gdv2.
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We have:

θ1 =
√
E du,

θ2 =
√
Gdv,

dθ1 = (
√
E)v dv ∧ du = −(

√
E)v du ∧ dv,

= − (
√
E)v√
G

du ∧ θ2 = −ω1
2 ∧ θ2,

dθ2 = (
√
G)u du ∧ dv = −(

√
G)u dv ∧ du

= − (
√
G)u√
E

dv ∧ θ2 = −ω2
1 ∧ θ1,

ω1
2 =

(
√
E)v√
G

du− (
√
G)u√
E

dv

dω1
2 = − ∂

∂u

(
1√
E

∂
√
G

∂u

)
du ∧ dv +

∂

∂v

(
1√
G

∂
√
E

∂v

)
dv ∧ du,

= − 1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
θ1 ∧ θ2.

Therefore, the Gaussian Curvature of a surface mapped by a coordinate patch
in which the parametric lines are orthogonal is given by:

K = − 1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
. (4.107)

Again, to connect with more classical notation, if a surface described by a
coordinate patch x(u, v) has first fundamental for given by I = E du2 +G dv2,
then

dx = xu du+ xv dv,

=
xu√
E

√
E du+

xv√
G

√
G dv,

=
xu√
E
θ1 +

xv√
G
θ2,

dx = e1 θ
1 + e2 θ

2, (4.108)

where
e1 =

xu√
E
, e2 =

xv√
G
.

Thus, when the parametric curves are orthogonal, the triplet {e1, e2, e3 = n}
constitutes a moving orthonormal frame adapted to the surface. The awkward-
ness of combining calculus vectors and differential forms in the same equation
is mitigated by the ease of jumping back and forth between the classical and
the modern formalism. Thus, for example, covariant differential of the normal
in 4.104 can be rewritten without the arbitrary vector in the operator LX as
shown:
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∇Xe3 = ω1
3(X) e1 + ω2

3(X) e2, (4.109)

de3 = e1 ω
1
3 + e2 ω

2
3 = 0, (4.110)

The equation just expresses the fact that the components of the Weingarten
map, that is, the second fundamental form in this basis, can be written as some
symmetric matrix given by:

ω1
3 = l θ1 +m θ2,

ω2
3 = m θ1 + n θ2. (4.111)

If E = 1, we say that the metric

ds2 = du2 +G(u, v)dv2, (4.112)

is in geodesic coordinates. In this case, the equation for curvature reduces even
further to:

K = − 1√
G

∂2
√
G

∂u2
. (4.113)

The case is not as special as it appears at first. The change of parameters

û′ =

∫ u

0

√
E du

results on dû2 = E du2, and thus it transforms an orthogonal system to one with
E = 1. The parameters are reminiscent of polar coordinates ds2 = dr2 +r2 dφ2.
Equation 4.113 is called Jacobi’s differential equation for geodesic coordinates.

A slick proof of the theorema egregium can be obtained by differential forms.
Let F : M → M̃ be an isometry between two surfaces with metrics g and g̃
respectively. Let {eα} be an orthonormal basis for dual basis {θα}. Define
ẽα = F∗eα. Recalling that isometries preserve inner products, we have

< ẽα, ẽβ >=< F∗eα, F∗eβ >=< eα, eβ >= δαβ .

Thus, {ẽα} is also an orthonormal basis of the tangent space of M̃. Let θ̃α

be the dual forms and denote with tilde’s the connection forms and Gaussian
curvature of M̃.

4.5.12 Theorem (Theorema egregium)
a) F ∗θ̃α = θα,
b) F ∗ω̃αβ = ωαβ ,

c) F ∗K̃ = K.
Proof
a) It suffices to show that the forms agree on basis vectors. We have

F ∗θ̃α(eβ) = θ̃α(F∗eβ),

= θ̃α(ẽβ),

= δαβ ,

= θ(eβ).
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b) We compute the pull-back of the first structure equation in M̃ :

dθ̃α + ω̃αβ ∧ θ̃β = 0,

F ∗dθ̃α + F ∗ω̃αβ ∧ F ∗θ̃β = 0,

dθα + F ∗ω̃αβ ∧ θβ = 0,

The connection forms are defined uniquely by the first structure equation, so

F ∗ω̃αβ = ωαβ

.
c) In a similar manner, we compute the pull-back of the curvature equation:

dω̃1
2 = K̃ θ̃1 ∧ θ̃2,

F ∗dω̃1
2 = (F ∗K̃)F ∗θ̃1 ∧ F ∗θ̃2,

dF ∗ω̃1
2 = (F ∗K̃)F ∗θ̃1 ∧ F ∗θ̃2,

dω1
2 = (F ∗K) θ1 ∧ θ2,

So again by uniqueness, F ∗K = K.

4.5.13 Example Catenoid - Helicoid
Perhaps the most celebrated manifestation of the theorema egregium, is that

of mapping between a helicoid M and a catenoid M̃ . Let a = c, and label the
coordinate patch for the former as x(uα) and y(ũα) for the latter. The first
fundamental forms are given as in 4.25 and 4.26.

ds2 = du2 + (u2 + a2) dv2,

ds̃2 =
ũ2

ũ2 − a2
dũ2 + ũ2 dṽ2

with

E = 1, G = u2 + a2,

Ẽ =
ũ2

ũ2 − a2
, G̃ = ũ2.

Let F : M → M̃ be the mapping y = Fx, defined by ũ2 = u2 + a2 and ṽ = v.
Since ũ dũ = u du, we have ũ2 dũ2 = u2 du2 which shows that the mapping
preserves the metric and hence it is an isometry. The Gaussian curvatures K
and K̃ follow from an easy computation using formula 4.107.

K =
−1√
u2 + a2

∂

∂u

(
∂

∂u

√
u2 + a2

)
=

a2

(u2 + a2)2
, (4.114)

K̃ = −
√
ũ2 − a2

ũ2

∂

∂ũ

(√
ũ2 − a2

ũ

)
= −a

2

ũ4
. (4.115)

It is immediately evident by substitution that as expected F ∗K̃ = K. Figure
4.13 shows several stages of a one-parameter family Mt of isometries deforming
a catenoid into a helicoid. The one-parameter family of coordinate patches
chosen is

zt = (cos t) x + (sin t) y (4.116)
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Fig. 4.13: Catenoid - Helicoid isometry

Writing the equation of the coordinate patch zt in complete detail, one can
compute the coefficients of the fundamental forms and thus establish the family
of surfaces has mean curvature H independent of the parameter t, and in fact
H = 0 for each member of the family. We will discuss at a later chapter the
geometry of surfaces of zero mean curvature.

4.5.14 Example Isothermal coordinates.
Consider the case in which the metric has the form

ds2 = λ2 (du2 + dv2), (4.117)

so that E = G = λ2, F = 0. A metric in this form is said to be in isothermal
coordinates. Inserting into equation 4.107, we get

K = − 1

λ2

[
∂

∂u

(
1

λ

∂λ

∂u

)
+

∂

∂v

(
1

λ

∂λ

∂v

)]
,

= − 1

λ2

[
∂

∂u

∂

∂u
(lnλ) +

∂

∂v

∂

∂v
(lnλ)

]
.

Hence,

K = − 1

λ2
∇2(lnλ). (4.118)

The tantalizing appearance of the Laplacian in this coordinate system gives
an inkling that there is some complex analysis lurking in the neighborhood.
Readers acquainted with complex variables will recall that the real and imag-
inary parts of holomorphic functions satisfy Laplace’s equations and that any
holomorphic function in the complex plane describes a conformal map. In an-
ticipation of further discussion on this matter, we prove the following:

4.5.15 Theorem Define the mean curvature vector H = Hn. If x(u, v) is
an isothermal parametrization of a surface, then

xuu + xvv = 2λ2H. (4.119)

Proof Since the coordinate patch is isothermal, E = G = λ2 and F = 0.
Specifically, we have < xu,xu >=< xv,xv >, and < xu,xv >= 0. Differentia-
tion then gives:
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< xuu,xu > =< xv,xvu >,

= − < xvv,xu >,

< xuu + xvv,xu > = 0.

In the same manner,

< xvv,xv > =< xu,xuv >,

= − < xuu,xv >,

< xuu + xvv,xv > = 0.

If follows that xuu+xvv is orthogonal to the surface and points in the direction
of the normal n. On the other hand,

Eg +Ge

2EG
= H,

g + e

2λ2
= H,

e+ g = 2λ2H,

< xuu + xvv,n > = 2λ2H,

xuu + xvv = 2λ2H.



Chapter 5

Geometry of Surfaces

5.1 Surfaces of Constant Curvature

5.1.1 Ruled and Developable Surfaces

We present a brief discussion of surfaces of
constant curvature K = 0. since K = k1k2, a sur-
face with zero Gaussian curvature at each point
must have a principal direction with zero normal
curvature, that is, either k1 = 0 or k2 = 0. It
is therefore a necessary condition for a surface to
have K = 0, that at each point there be a prin-
cipal direction which is a straight line. A surface
having this property of containing a straight line
or segment of a straight line at each point is called
a ruled surface. We may think of a ruled surface as a surface generated by the
motion of a straight line. Given a point p on a ruled surface, let α(t) be a
curve with α(0) = p, and let X(t) be a unit vector field on the curve and point-
ing along the lines at their intersection points with the curve. On can then
parametrize the surface near p by a coordinate patch

y(t, v) = α(t) + vX(t),

as shown in the figure.

Having a straight line passing through each point in the surface is a necessary
but not sufficient condition to ensure that K = 0, as illustrated by the following
examples:

1) Saddle. Consider the saddle z = xy which is trivially parametrized by
the coordinate patch y(u, v) = (u, v, uv). The patch can be written as y(u, v) =
(u, 0, 0) + v(0, 1, u) or as y(u, v) = (0, v, 0) + u(1, 0, v), so that the surface is
doubly-ruled as shown in figure 5.1(a). The rulings are the coordinate curves
u= constant, and v= constant. This neat fact is reflected in some architectural
designs of simple structures with roofs made of straight slabs arranged in the

136
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shape of a hyperbolic paraboloid. A short computation gives

K = −(1 + u2 + v2)−2 = −(1 + x2 + y2)−2

2) Hyperboloid. A common calculus example of a doubly ruled surface
is given by circular hyperboloids of one sheet. Consider the circle α(u) =
(cosu, sinu, 0), and the vector field X(u) = α̇ + k which points at a constant
skew angle π/4. Then the (x, y, z) coordinates in the parametrization

y(u, v) = α(u) + vX(u),

= (cosu, sinu, 0) + v(− sinu, cosu, 1),

= (cosu− v sinu, sinu+ v cosu, v),

satisfy the equation x2+y2−z2 = 1; that is, the surface is a circular hyperboloid
of one sheet. The coordinate curves u =constant are straight line generators.
If instead, we choose X(u) = −α̇ + k, we get the same surface, but with an
orthogonal set of line-generators as shown in figure 5.1(b). This is an example of
a surface in which the asymptotic curves are orthogonal at each point. Tangent
planes to the surface at any point in the circle x2 + y2 = 1 at the throat,
intersect the hyperboloid in a pair of line generators. The Gaussian curvature
is also negative and is given by

K = −(1 + 2v2)−2 = −(1 + 2z2)−2.

The double-ruled nature of the circular hyperboloid has been exploited by civil
engineers in the design of heavy-duty gears with long teeth engaging along the
lines. The double-ruling is also advantageous for the construction of the metal
frame a type of tower to used in nuclear reactors.

3) Möbius Band. The formal definition of an orientable Surface M is that
there exists a two-form that is non-zero at every point of M. The idea is that the
2-form represents the oriented differential of surface area dS =

√
det g du ∧ dv.

For the present purpose, an intuitive characterization is that there exists a unit
normal vector field on M . The Möbius Band is the most famous example of a
non-orientable surface. It can be parametrized by the coordinate patch

y(u, v) = α(u) + vX(u),

α(u) = (cos 2u, sin 2u, 0),

X(u) = (cosu cos 2u, cosu sin 2u, sinu),

x(u, v) = (cos 2u+ v cosu cos 2u, sin 2u+ v cosu sin 2u, v sinu). (5.1)

The curve α(u) is a circle, and the vector X(u) on the circle points in a direction
that winds around by an angle π in one revolution. In the rendition of the
surface shown in figure 5.1, the parameter v is restricted to [−0.2, 0.2]. As
is evident from the graph, the generating line segment flips after one turn,
resulting on a one-sided surface. Indeed, at u = 0 the generating line segment is
vX(0) = v(1, 0, 0) but after one revolution at u = π, the generating line segment
given by vX(π) = v(−1, 0, 0), points in the opposite direction. We can interpret
the topology of the surface as a rectangle with a pair of opposite sides identified
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(see figure 9.2). Clearly, it is impossible to choose a well-defined normal vector
field. The Gaussian curvature is somewhat messy, but the computation shows
that K is negative everywhere.

Fig. 5.1: Examples of Ruled Surfaces

Let M be a ruled surface with unit normal N and let X be a unit vector
field tangent along the straight lines that generate the surface. The straight
lines are geodesic in R3 so ∇XX = 0. By Gauss’s equation 4.74, ∇XX = 0,
so the line is also a geodesic on the surface and < LX,X >= 0, that is, the
generator lines are asymptotic. Let Y be a unit tangent vector field orthogonal
to X so that the pair constitutes an orthogonal basis of the tangent space at
each point. Then

K =< LX,X >< LY, Y > − < LX,Y >2,

= − < LX,Y >2= −f2,

so we conclude that K ≤ 0. If the vectors X and Y are not an orthogonal basis,
the result must be modified as in equation 4.66, which gives,

K = − f2

EG− F 2
. (5.2)

The general formula for the Gaussian curvature of a ruled surface is obtained
by a straightforward computation. We have:

yu = α′ + vX ′,

yv = X,

yu × yv = (α′ + vX ′)×X,
EG− F 2 = ‖yu × yv‖ = ‖X × (α′ + vX ′)‖.

yuv = X ′, yvv = 0.

Hence, g =< yvv, N >= 0, and f =< yuv, N >= (α′XX ′)/
√
EG− F 2, where

we are using the notation for the triple product. The resulting curvature is:

K − (α′XX ′)

‖X × (α′ + vX ′)‖4
(5.3)
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We may choose the orthogonal trajectories α(u) to be integral curves of Y
parametrized by arc length, so that Y = α′(u) = T . Since by choice, T and
X are orthogonal unit vectors tangent to the surface, N = T × X is normal
to the surface and we have an orthonormal frame at each point. The covariant
derivatives of the frame with respect to T along the one-parameter curves α is
just derivative with respect to the parameter, so we get a Frenet-like frame

T ′ = c1X + c2N
X ′ = −c1T + c3N
N ′ = −c2T −c3X

. (5.4)

A one-line computation gives:

c3 = − < X,N ′ >=< N,X ′ >= (TXX ′).

The function

p(u) =
(TXX ′)

‖X ′‖2
=

c3
c12 + c32

,

is called the distribution parameter. Substituting 5.4 into 5.3, we rewrite the
Gaussian curvature as

K = − (TXX ′)

‖X × (T + vX ′)‖4
,

= − c3
2

[1− 2c1v + c12v2 + v2c32]2
.

The special curve along which c1 = 0 that is, (T ′, X) = 0 is called the stricture
curve. Using the parametrization with the base curve being the stricture curve,
we have p(u) = 1/c3 and

K = − c3
2

(1 + v2c3(2)
=

p2(u)

(p2(u) + v2))
. (5.5)

A beautiful example is the hyperboloid of revolution in figure 5.1(b). The circle
α(t) at the throat used to generate the surface is the stricture curve. It turns
out that X does not need to be orthogonal to T as it is the case here, as long
as ‖x‖ = 1 and (T ′, X) = 0.

A ruled surface is called a developable surface if in addition, LX = ∇XN =
0, that is, the normal vector is parallel along the generating lines. Then equality
holds in K ≤ 0 and we have the following theorem

5.1.1 Theorem A necessary and sufficient condition for surface to be devel-
opable is to have Gaussian curvature K = 0 .

It is surprising that the general case of a closed and connected surface with
K = 0 to be developable was not proved until 1961 in a short paper by Massey.
A particularly interesting type of developable surfaces are those in which the
vector X is taken to be the tangent vector T of the curve α itself. A surface
with this property is called a tangential developable.
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5.1.2 Example Developable helicoid. A helicoid

x(u, v) = (u cos v, u sin v, v)

can be written in the form x = α(v)+uX(v), where α(v) = (0, 0, v) and X(v) =
(cos v, sin v, 0), so it is a ruled surface. The surface has negative curvature
as computed in 4.114 and the stricture curve is the z-axis. A neat related
surface is obtained by the tangential developable of a helix. We choose α(u) =
(cosu, sinu, u) and X = T = (− sinu, cosu, 1) so that

x(u, v) = (cosu− v sinu, sinu+ v cosu, u+ v). (5.6)

Since this is a flat surface having K = 0 it is isometric to a plane. Indeed, if one
takes a thin cardboard annulus with a slit in the xy-plane with the appropriate
radius, one can bend the annulus around a cylinder by lifting one edge of the
slit, thus creating a ribbon that wraps around the cylinder as shown in figure
5.2. A magnificent architectural example is exhibited by base of the spiral
staircase near the pyramid of the Louvre museum. For the maple-generated
image, a small numerical computation was carried to figure out the vertical shift
and radius of the helicoid so that the staircase and the supporting developable
match at the helix of intersection.

Fig. 5.2: Developable Helicoid

5.1.2 Surfaces of Constant Positive Curvature

In this section we prove a few global theorems. We assume the reader is
acquainted with the notion of a compact space. In particular, in Rn a compact
set is closed and bounded so it is contained in a ball of sufficiently large radius,
centered at the origin. We are concerned with compact manifolds, which by
definition are locally Euclidean and have a differentiable structure. Thus, a
compact surface in R3 cannot have any edges or creases, and the tangent space
is well defined at all points.

5.1.3 Theorem In any compact surface in R3 there exists at least one point
p at which K(p) > 0.
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Fig. 5.3: Compact Surface

Proof Let M be compact. Consider the function f : M → R defined by
f = ‖x‖, where x are local coordinates of a point on the surface. This is a
continuous function on compact space, so it attains a maximum at a least one
point p. The geometric interpretation of p is that it is farthest away from the
origin. The intuition about this theorem is simply that near the point p, the
surface is entirely on one side of the tangent plane as shown in figure 5.3, so the
principal curvatures have the same sign. We make this formal. Let R be the
distance from p to the origin and construct a sphere of radius R centered at the
origin. The sphere will be tangential to the surface at p. Given a unit tangent
T , let α(t) be unit speed integral curve near p, that is, α(0) = p and T = α′(0).
The composite function f(α(t)) also has a maximum at p, so by the second
derivative test, we have [f(α)]′(0) = 0, and [f(α)]′′(0) < 0. By the definition
of f , f(α) = ‖α2‖ = (α, α), so [f(α)]′(0) = 2(α, α′)(0) = 0. We conclude that
the position vector xo = α(0) of the point p is orthogonal to T . Since this is
true for any such T , the vector xo is also normal to the surface, so that the unit
normal is n = xo/R. Computing the second derivative we get

1
2 [f(α)]′′(0) =< α,α′ >′ (0),

=< T, T > + < xo, α
′′(0) >,

= 1 +R < n, α′′(0) >< 0,

But clearly < n, α′′(0) > is the normal curvature along T so

kn(p) < − 1

R
,

Again, since T was arbitrary, the normal curvature is less than −1/R in any
direction, a geometric indication that the surface is bending inward more than
the sphere as intuitively shown by the picture. Therefore

K(p) = κ1κ2 >
1

R2
> 0.
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5.1.4 Theorem In a surface in which the coordinate directions are chosen
to be the principal directions of curvature, the Codazzi equations are

∂κ1

∂u
=

1

2

Ev
E

(κ2 − κ1),

∂κ2

∂u
=

1

2

Gu
G

(κ1 − κ2) (5.7)

Proof Let X and Y be eigenvectors of L, so that

LX = κ1X, κ1 =
< LX,X >

< X,X >
=

e

E
,

LY = κ2Y, κ1 =
< LY, Y >

< Y, Y >
=

g

G
.

If κ1 6= κ2, the eigenvectors are orthogonal, so taken them as the parametric
directions means that F = f = 0 . The Codazzi equations 4.98 are obtained
by setting to zero the normal component of xαβγ − xβαγ = 0. In terms of the
covariant derivative formulation of the Gauss 4.74 with X = e1 = xu, Y =
e2 = xv, Z = eγ , the normal component of (∇X∇Y −∇Y∇X)Z = 0 result in
the equations of Codazzi in the form: (See 6.22)

< ∇XLY −∇XLX,Z > = 0,

∇XLY −∇XLX = 0

We proceed to expand this equation:

∇e1Le2 −∇e2Le1 = 0,

∇e1(κ2e2)−∇e2(κ1e1) = 0,

∂κ2

∂u
e2 + κ2Γα12eα −

∂κ1

∂v
e1 − κ1Γα21eα = 0.

Setting the e1 and e2 components to zero, we get:

∂κ2

∂u
= κ1Γ2

21 − κ2Γ2
12 = (κ1 − κ2)Γ2

12,

∂κ1

∂v
= κ2Γ1

12 − κ1Γ1
21 = (κ2 − κ1)Γ1

21.

The result follows immediately from the expressions for the Christoffel symbols
4.83 after setting F = 0.

5.1.5 Proposition (Hilbert) Let p be a non-umbilic point and κ1(p) > κ2(p).
If κ1 has a local maximum at p and κ2 has a local minimum at p, the K(p) < 0.
Proof Take the asymptotic curves as parametric curves as in the preceding
proposition. Suppose κ1(p) > κ2(p) and that the principal curvatures are local
extrema. Then (κ1)u = (κ2)v = 0 so by equation 5.7, we have Ev = Gu = 0.
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Applying the second derivative test by differentiating 5.7 at p we get

(κ1)vv =
1

2

Evv
E

(κ2 − κ1) ≤ 0,

(κ2)uu =
1

2

Guu
G

(κ1 − κ2) ≥ 0,

which implies that Evv ≥ 0, end Guu ≥ 0. On the other hand, noting as above
that Ev = Gu = 0, the Gaussian curvature formula 4.107 gives

K = − 1

2EG
(Evv +Guu) ≤ 0.

5.1.6 Theorem (Liebmann) A compact manifold M in R3 of constant Gaus-
sian curvature K is a sphere of radius R with K = 1/R2.

Proof Since M is compact, there is at least one point at which K > 0, and
since K is constant, K > 0 everywhere. We prove by contradiction that all
points are umbilic. Suppose there exists an non-umbilic point. Without loss of
generality, we assume that the larger principal curvature is κ1. The principal
curvatures are continuous functions in a compact space, so there is a point p at
which κ1 is maximum. Since K = κ1κ2 =constant then at p, κ2 is a minimum.
By Hilbert’s theorem above, K(p) < 0 which is a contradiction. So M is a
sphere so some radius R and K = 1/R2.

5.1.3 Surfaces of Constant Negative Curvature

The geometry of surfaces of constant negative curvature is very rich and it
has a number of neat applications to physics. If K < 0, then it must be the case
that the principal curvatures κ1 and κ2 have different signs. All points on the
surface are hyperbolic, and by Hilbert’s theorem there are no compact surfaces
of constant negative curvature. In addition, since κ1 6= κ2, there always exist
orthogonal asymptotic curves with asymptotic directions along the eigenvectors
of the second fundamental form. The prototype of a surface of constant negative
curvature is the pseudosphere introduced in equation 4.24, which we repeat here
for convenience.

x(u, v) = (a sinu cos v, a sinu sin v, a(cosu+ ln(tan
u

2
)).
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To compute the Gaussian curvature we first verify that the first fundamental
form is as stated in 4.24. We have:

xu = (a cosu cos v, a cosu sin v, a
cos2 u

sinu
),

xv = (−a sinu sin v, a sinu cos v, 0),

E = a2 cos2 u+ a2 cos4 u

sin2 u
,

= a2 cos2 u(1 +
cos2 u

sin2 u
),

= a2 cot2 u,

F = 0,

G = a2 sin2 u.

So the parametric curves are orthogonal, and

I = a2 cot2 u du2 + a2 sin2 u dv2.

Inserting into formula 4.107, we get

K = − 1

a2 cosu

[
∂

∂u

(
sinu

a cosu

∂

∂u
(a sinu)

)]
,

= − 1

a2 cosu

∂

∂u
(sinu),

= − 1

a2
. (5.8)

Another common parametrization of the pseudosphere is obtained by the sub-
stitution

µ = a ln tan(u2 ). (5.9)

Without real loss of generality, we set a = 1, so eµ = tan(u/2). The substitution
is somewhat related to the classical Gudermannian. We have:

sechµ =
2

eu/2 + e−u/2
,

=
2

tan(u/2) + cot(u/2)
,

= 2 sin(u/2) cos(u/2),

= sinu,

and

tanhµ =
eu/2 − e−u/2

eu/2 + e−u/2
,

=
tan(u/2)− cot(u/2)

tan(u/2) + cot(u/2)
,

= sin2(u/2)− cos2(u/2),

= − cosu

In simplifying the equations above we multiplied top and bottom of the fractions
by sin(u/2) cos(u/2). In terms of the parameter µ, the coordinate patch for the
pseudosphere becomes

x(µ, v) = (a sechµ cos v, a sechµ sin v, a(µ− tanhµ)), (5.10)
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and the fundamental forms are:

I = tanh2 µ dµ2 + sech2 µ dv2,

II = − sechµ dµ2 + sechµ tanhµ dv2.

Using this latter parametrization we compute the surface area and volume of
the top half of the pseudosphere.

S =

∫ ∫ √
EG− F 2,

=

∫ π

0

∫ ∞
0

(a sechµ)(a tanhµ) dµ dv,

= 4πa2, (5.11)

V = πa3

∫ ∞
−∞

sech2 µ tanh2 µ dµ, (5.12)

= 2
3πa

3. (5.13)

It is interesting to note that the surface area is exactly the same as that of
a sphere of radius a, whereas the volume of revolution is half the volume of
the sphere. Without loss of understanding of the geometry, for the rest of this
section we set a = 1, so that K = −1 We have the following theorem:

5.1.7 Theorem Let M be a surface with constant negative curvature K =
−1. If the parametric curves are chosen to be the asymptotic directions, there
exists some quantity ω so that the first fundamental form can be written as:

I = cos2 ω du2 + sin2 ω dv2, (5.14)

Proof The proof amounts to analyzing the integrability conditions represented
by the Codazzi equations. In the brilliant book by Eisenhart [19], the author
writes down the Codazzi equations and notes that the choice of E and G above
are solutions of the equations. We take a more humble approach and show
the steps on how to find a solution using the Cartan formalism. We have seen
that using the asymptotic curves as parametric curves means that F = f = 0,
κ1 = E/e and κ1 = G/e. Let E = α2 and G = β2 so that the first fundamental
form is:

I = α2 du2 + β2 dv2.

We choose θ1 = α du, and θ2 = β dv, as basis for the cotangent space dual to
{e1, e1}. Let e3 be the unit normal to the surface. We have:

Le1 = κ1e1 = ∇e1e3 = ωi3(e1)ei,

Le2 = κ2e2 = ∇e2e3 = ωi3(e2)ei,

so,

ω1
3 = κ1θ

1 = κ1α du,

ω2
3 = κ2θ

2 = κ2β dv.
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On the other hand,

dθ1 = αv dv ∧ du = −(
αv
β
du) ∧ θ2 = −ω1

2 ∧ θ2,

dθ2 = βu du ∧ dv = −(
βu
α
dv) ∧ θ1 = −ω2

1 ∧ θ1,

ω1
2 =

αv
β
du− βu

α
dv. (5.15)

Recall the Codazzi equations 4.104

dω1
3 = −ω1

2 ∧ ω2
3,

dω2
3 = −ω2

1 ∧ ω1
3.

Inserting the connection forms into the first Codazzi equation gives

(κ1α)v dv ∧ du+ [
αv
β
du− βu

α
dv] ∧ κ2β dv = 0.

Since κ1κ2 = −1, we can eliminate κ2 and solve for α.

(κ1α)v − αvκ2 = 0,

(κ1 − κ2)αv + (κ1)vα = 0,

αv
α

= − (κ1)v
κ1 − κ2

,

= − (κ1)v
κ1 + (1/κ1)

,

= −κ1(κ1)v
κ1

2 + 1
,

∂

∂v
(lnα) = − ∂

∂v
ln[(κ1

2 + 1)1/2].

We may set

κ1 = tanω,

κ2 = − cotω, (5.16)

for some ω. Then (κ1
2 + 1)1/2 = secω, so

∂

∂v
(lnα) = − ∂

∂v
ln(secω) =

∂

∂v
ln(cosω).

We choose the simplest solution α = cosω. By a completely analogous compu-
tation using the second Codazzi equation, we get β = sinω and that proves the
theorem.
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5.1.8 Theorem If a surface with K = −1 has first fundamental form writ-
ten as I = cos2 ω du2 + sin2 ω du2, then ω satisfies the so-called sine-Gordon
equation (SGE):

ωuu − ωvv = sinω cosω. (5.17)

Proof Here E = cos2 ω and G = sin2 ω. The theorem follows immediately from
inserting these into the Gauss curvature equation in orthogonal coordinates
4.107 and setting K = −1

K = −ωuu − ωvv
sinω cosω

= −1

The following transformation is often made:

u = û+ v̂ u = û− v̂.

A quick computation yields a transformed fundamental form

Î = dû2 + 2 cos ω̂ dûdv̂ + dv̂2, (5.18)

where ω = ω̂/2. A coordinate system in which the first fundamental form is of
this type is called a Tchebychev patch (eventually one has to make a choice on
how to transliterate from the Cyrillic alphabet). The corresponding curvature
equation is

ω̂uv = sin ω̂ (5.19)

The sine-Gordon equation is one of class of very special type of nonlinear partial
differential equations which admit soliton solutions. This is an incredibly rich
area of research that would take us into whole new branch of mathematics. We
constrain our discussion to certain transformations that allow one to obtain
new solutions from known solutions, and associate these with pseudospherical
surfaces, that is, surfaces in R3 with constant negative curvature. We note that
if in the Sine-Gordon equation 5.17 one sets v = t where t is a time parameter,
what we have is a non-linear wave equation with speed v = 1. The reader will
then recognize the transformation u = û + t̂ u = û − t̂ as the equations of
characteristics. It is thus not surprising that the equation has solutions of the
form f(u− t).

5.1.4 Bäcklund Transforms

5.1.9 Definition Let M by a surface with K = −1 and let F : M → M̂ be
a map to another surface M̂ . Let p̂ = F (p) and N(p) and N̂(p̂) be the unit
normals at p and p̂ respectively. M̂ is called a Bäcklund transform (BT) of M
with constant angle of inclination σ, if for all p:

a) The angle between N and N̂ is σ,
b) The distance λ between p and p̂ is sinσ,
c) the segment pp̂ is tangent to M at p.

Bäcklund proved in 1883, that F maps pseudospherical surfaces to pseudospher-
ical surfaces and asymptotic lines to asymptotic lines. He also showed that given
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Fig. 5.4: Bäcklund Transform

any unit tangent vector at p that is not an asymptotic direction, a BT exists
with pp̂ in the direction of that tangent. The idea behind the proof of the BT
theorem is basically to quantify the transformation from an orthonormal frame
at p to the orthonormal frame at p̂, find the conditions required for K̂ = −1,
and write down the integrability conditions for the Cartan structure equations.
The transformation consists of a rotation by an angle σ, a translation from p to
p̂ and a rotation by an angle θ to align the frame with segment pp̂. This could
be done all at once, but we prefer to carry out the process in two stages. In the
first stage, we apply the translation of the frame assuming that the segment
joining p and p̂ is parallel to the basis vector e1 at p, followed by a rotation by
an angle σ around the e1 direction. We use this to seek conditions to guarantee
that K̂ = −1. In stage two, we apply a rotation by an angle θ in the tangent
plane.

5.1.10 Theorem Let M have Gaussian curvature K = −1, and let x(u, v) a
coordinate patch for M so that I = E du2 +G dv2. Let {e1, e2, e3 = n} be an
orthonormal frame aligned with the asymptotic directions. Denote the frame
and Cartan forms at p̂ with hats. Consider the transformation x̂ = x + λe1

along with a rotation by an angle σ around the e1 axis. Then K̂ = −1 if and
only if λ = sinσ.
Proof A rotation by an angle σ around e1 leaves the tangent vector e1 and its
dual form θ1 fixed. The rotation has a matrix representation as shown below.ê1

ê2

ê3

 =

1 0 0
0 cosσ − sinσ
0 sinσ cosσ

e1

e2

e3

 . (5.20)

We compute the Cartan frame equations. We have: The coframe forms are
θ1 =

√
E du, θ2 =

√
G dv and θ3 = 0 on M . Thus

dx = xu du+ xv dv,

=
xu√
E

√
e du+

xv√
G

√
e dv,

=
xu√
E
θ1 +

xv√
G
θ2,

= e1θ
1 + e2θ

2.
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We now compute dx̂ taking into account the rotation and then the translation:

dx̂ = ê1θ̂
1 + ê2θ̂

2,

= e1θ
1 + [cosσ e2 − sinσe3] θ̂2,

dx̂ = dx + λde1,

= e1θ
1 + e2θ

2 + λ(e2 ω
2
1 + e3 ω

3
1)

Equating the coefficients of e2 and e3 in two equations above, we get

cosσ θ̂2 = θ2 + λω2
1,

− sinσ θ̂2 = λ ω3
1. (5.21)

Recall from equation 4.111, that ω1
3 = lθ1 + mθ2 and ω2

3 = mθ1 + nθ2 yield
symmetric matrix components of the second fundamental form in the given
basis. Using this fact and wedging with θ̂1 the second equation above, we get

− sinσ θ̂1 ∧ θ̂2 = λ θ̂1 ∧ ω3
1,

= λ θ1 ∧ (l θ1 +m θ2),

θ̂1 ∧ θ̂2 = − λm

sinσ
θ1 ∧ θ2. (5.22)

Multiplying the first equation in 5.21 by sinσ, the second by cosσ, and adding,
we get

sinσ[θ2 + λ ω2
1] = −λ cosσ ω3

1, (5.23)

θ2 = − λ

sinσ
[sinσ ω2

1 + cosσ ω3
1]. (5.24)

Next, we compute ω̂32:

ω̂32(X) =< ∇X ê2, ê3 >,

=< cosσ∇Xe3 − sinσ∇Xe3, sinσ e2 + cosσ e3 >,

= cos2 σ < ∇Xe2, e3 > − sin2 σ < ∇Xe3, e2 >,

= (cos2 σ + sin2 σ) < ∇Xe2, e3 >,

= ω32(X),

ω̂3
2 = ω3

2 = −m θ1 − n θ2

By the same process, we calculate ω̂31:

ω̂31(X) =< ∇X ê1, ê3 >,

=< ∇Xe3 +∇Xe3, sinσ e2 + cosσ e3 >,

=< ω2
1(X)e2 + ω3

1(X)e3, sinσ e2 + cosσ e3 >,

= sinσω21(X) + sinσω31(X),

ω̂3
1 =

sinσ

λ
θ2.
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Finally, putting these results together, we get

dω̂1
2 = −ω̂1

3 ∧ ω̂3
2,

= −
[
m sinσ

λ

]
θ1 ∧ θ2,

=

[
m sinσ

λ

] [
sinσ

m λ

]
θ̂1 ∧ θ̂2,

=

[
sinσ

λ

]2

θ̂1 ∧ θ̂2.

Hence

K = −
[

sinσ

λ

]2

= −1

if and only if λ = ± sinσ. We choose λ = sinσ
The conclusion of the theorem explains the condition in the definition of

a BT that requires this equation to hold. With this condition, equation 5.23
takes the form:

ω1
2 = cotσ ω3

1 + cscσ θ2. (5.25)

We move to stage two of the BT process.

5.1.11 Theorem Let M be a pseudospherical surface with first fundamental
form as in 5.14, and let F : M → M̂ be a BT with angle of inclination σ. If
the segment pp̂ makes a constant angle α with the basis vector e1 at each point
p ∈M , then

sinσ(θu + ωv) = sin θ cosω − cosσ cos θ sinω,

sinσ(θv + ωu) = − cos θ sinω + cosσ sin θ cosω. (5.26)

Proof Suppose pp̂ makes an angle θ with the tangent vector e1. In this case
we first perform a rotation of axis around the normal vector e3 to align the
frame with e1. The rotation can be represented by a matrix ei = ej B

j
i

B =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (5.27)

The effect on the Cartan frame is much easier establish since all we have to do
is apply the change of basis formula 3.48 as shown in 3.51.

ω1
2 = ω1

2 − dθ,
ω1

3 = cos θ ω1
3 + sin θ ω2

3,

ω2
3 = − sin θ ω1

3 + cos θ ω2
3. (5.28)

The dual forms transform with A = B−1 = BT , that is θ
i

= Aijθ
j . In particu-

lar,

θ
2

= − sin θ θ1 + cos θ θ2. (5.29)
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If we start with a pseudospherical surface with I = cos2 ω du2 + sin2 ω dv2, the
Cartan forms are:

θ1 = cosω du, θ2 = sinω dv,

ω1
3 = sinω du, ω2

3 = − cosω dv

ω1
2 = −ωv du− ωu dv.

The BT transformation is the composition of the stage one and stage two.
This means that we must subject the Cartan forms to the change of basis by a
rotation by θ, as described by equations 5.28 and 5.29, followed by substitution
into equation 5.25. We get:

(ω1
2 − dθ) = cotσ (cos θ ω1

3 + sin θ ω2
3) + cscσ(− sin θ θ1 + cos θ θ2).

We extract two formulas obtained by equating the coefficients of du and dv
respectively.

−ωv − θu = cotσ cos θ sinω − cscσ sin θ cosω,

−ωu − θv = − cotσ sin θ cosω + cscσ cos θ sinω.

The theorem follows by multiplying these equations by sinσ, and rearranging
terms. The system of equations 5.26 is the classical Bäcklund transform. In the
special case in which σ = π/2, the angle between the normals e3 and ê3 is a
right angle, so ê3 is parallel to a tangent vector of M . This is called a Bianchi
transform. Equations 5.26 then reduce to the much simpler system:

θu + ωv = sin θ cosω,

θv + ωu = − cos θ sinω. (5.30)

We can rewrite the BT-equations in the so-called asymptotic coordinates. Let

u = x+ t,

v = x− t,
so that

x =
1

2
(u+ v),

t =
1

2
(u− v).

By the chain rule, we have:

θu =
1

2
(θx + θt),

θv =
1

2
(θx − θt),

and
ωu =

1

2
(ωx + ωt),

ωv =
1

2
(θx − θt).

Adding and subtraction equations 5.26, the system reduces to

θx + ωx =
1 + cosσ

sinσ
sin(θ − ω),

θt − ωt =
1− cosσ

sinσ
sin(θ + ω),
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which we can rewrite as

θt = ωt + s sin(θ + ω),

θx = −ωx +
1

s
sin(θ − ω), , (5.31)

where s = tan(σ/2.) We denote the system of BT equations 5.31 by the notation
F = F (ω, θ, s).

Given a pseudospherical Surface S associated with a solution ω of the sine-
Gordon equation, the transform F = F (ω, θ, σ) produces a new solution θ
associated with a new pseudospherical surface S′. Of course, the process can
be iterated to produce new surfaces and new solutions. The neat thing is that
further iterations can be carried out algebraically without the need to solve more
differential equations. This remarkable result is encapsulated in the following
theorem (see [19]).

5.1.12 Theorem (Bianchi permutability) Let {S, ω} be the pair consisting
of a pseudospherical surface corresponding to a SGE solution ω. Suppose that
sin2 θ1 6= sin2 θ2, and that {S1, θ1} and {S2, θ2} are pseudospherical surfaces
generated respectively from surface S by BT’s

S
F (ω,θ1,s1)−−−−−−−→ S1,

S
F (ω,θ2,s2)−−−−−−−→ S2.

Then, the pair {S′,Ω} consisting of a pseudospherical surface S′ with SGE
solution Ω can be found algebraically by requiring the compatibility of BT’s

S1
F (θ1,Ω,s2)−−−−−−−→ S′,

S2
F (θ2,Ω,s1)−−−−−−−→ S′.

Proof It suffices to use only one of each pair of BT’s. By assumption,

(θ1)t = ωt + s1 sin(θ1 + ω)

(θ2)t = ωt + s2 sin(θ2 + ω)
and

Ωt = (θ1)t + s2 sin(Ω + θ1)

Ωt = (θ2)t + s1 sin(Ω + θ2)

Adding the difference of the two equations on the left with the difference of the
two equations on the right, we see that all derivatives cancel, and we get:

s1[sin(θ1 + ω)− sin(Ω + θ2)] + s2[sin(Ω + θ1)− sin(θ2 + ω)] = 0.

If we have quantities A and B such that As1 +Bs2 = 0, then

s1

s2
= −B

A
,

1 +
s1

s2
=
s2 + s1

s2
=
A−B
A

,

1− s1

s2
=
s2 − s1

s2
=
A+B

A
,

s2 + s1

s2 − s1
=
A−B
A+B

.
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Applying this to the equation above, we have

s2 + s1

s2 − s1
=

[sin(θ1 + ω)− sin(Ω + θ2)]− [sin(Ω + θ1)− sin(θ2 + ω)]

[sin(θ1 + ω)− sin(Ω + θ2)] + [sin(Ω + θ1)− sin(θ2 + ω)]
,

=
[sin(θ1 + ω)− sin(Ω + θ1)] + [sin(θ2 + ω)− sin(Ω + θ2)]

[sin(θ1 + ω) + sin(Ω + θ1)]− [sin(θ2 + ω) + sin(Ω + θ2)]
,

Using the sum-product formulas for sine functions we rewrite the equation as,

s2 + s1

s2 − s1
=

2 sin[ 1
2
(ω − Ω)] cos[ 1

2
(Ω + ω + 2θ1)] + 2 sin[ 1

2
(ω − Ω)] cos[ 1

2
(Ω + ω + 2θ2)]

2 cos[ 1
2
(ω − Ω)] sin[ 1

2
(Ω + ω + 2θ1)]− 2 cos[ 1

2
(ω − Ω)] sin[ 1

2
(Ω + ω + 2θ2)]

,

=
2 sin[ 1

2
(Ω− ω)]{cos[ 1

2
(Ω + ω + 2θ1)] + cos[ 1

2
(Ω + ω + 2θ2)]}

2 cos[ 1
2
(ω − Ω)]{sin[ 1

2
(Ω + ω + 2θ1)]− sin[ 1

2
(Ω + ω + 2θ2)]}

,

Now, using the sum-product formulas again, we get,

s2 + s1

s2 − s1
=

4 sin[ 1
2
(Ω− ω)]{cos[ 1

4
(2θ1 − 2θ2)] cos[ 1

4
(2Ω + 2ω + 2θ1 + 2θ2)]}

4 cos[ 1
2
(ω − Ω)]{sin( 1

4
(2θ1 − 2θ2)) cos[ 1

4
(2Ω + 2ω + 2θ1 + 2θ2)]}

,

=
4 sin[ 1

2
(Ω− ω)] cos[ 1

2
(θ1 − θ2)]

4 cos[ 1
2
(ω − Ω)] sin[ 1

2
(θ2 − θ1)]

,

We conclude that,

tan

(
Ω− ω

2

)
=
s2 + s1

s2 − s1
tan

(
θ2 − θ1

2

)
(5.32)

It is easy to write coordinate patch equations for a BT. The vector x̂− x must
be a vector of length sinσ which is tangent to M at each point p and makes
and angle θ with e1. Therefore, we must have

x̂− x = sinσ[cos θ e1 + sin θ e2].

But, e1 = xu/
√
E and e2 = xv/

√
G, so we have:

x̂ = x + sinσ

[
cos θ

cosω
xu +

sin θ

sinω
xv

]
. (5.33)

5.1.13 Example Pseudosphere and one-soliton solution
If we are willing to sacrifice a bit of rigor for the sake of intuition, we can

motivate the derivation of the standard parametric representation of the pseu-
dosphere directly from the Bianchi transform. Recall that in the steps leading
to the SGE, we chose the principal curvatures (see equation 5.16) such that
κ1 = tanω and κ2 = − cotω. Then, as ω approaches zero, κ1 also approaches
zero, while κ2 becomes arbitrarily large, so as to maintain K = −1. The result
is a degenerate surface that collapses onto a straight line. We may think of
it as an infinitely long trumpet of infinitesimal diameter. As such, we pick a
degenerate patch of the form

x(u, v) = (0, 0, u)
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We set e1 = (0, 0, 1) and, anticipating a surface of revolution, we pick e2 =
(cosφ, sinφ, 0). Recalling the BT coordinate patch in equation 5.33

x̂ = x + sinσ[cos θ e1 + sin θ e2], (5.34)

we consider the case with sinσ = 1. With ω arbitrarily close to zero, the Bianchi
transform equations 5.30 become,

θu = sin θ, θv = 0.

We set v = φ and without loss of generality, we pick the constant of integration
in the first equation above to be 0. The elementary integral gives immediately
the stationary one-soliton solution

u = ln(tan θ
2 ), or, θ = 2 tan−1(eu).

The coordinate patch for the corresponding surface then gives,

x̂ = (0, 0, ln(tan θ
2 )) + cos θ(0, 0, 1) + sin θ(cosφ, sinφ, 0),

= (sin θ cosφ, sin θ sinφ, cos θ + ln(tan θ
2 ))

which agrees with the parametrization of the pseudosphere given in equation
4.24. In other words, the angle θ is precisely as shown in figure 4.6, consistent
with the geometry of the Bianchi transform stating that the segment joining
the corresponding points is tangential to the surface generated.

5.1.14 Example Dini’s surface
Another well-known surface that can be obtained by BT results in “twisting”
the pseudosphere in a helicoidal manner. Dini’s surface is obtained by removing
the special condition sinσ = 1. Again, if one begins with the trivial solution
ω = 0 of the Sine-Gordon equation 5.19, the BT equations 5.31 reduce to,

θt = s sin θ,

θx =
1

s
sin θ.

Integrating, we get

ln(tan θ
2 ) = sx+

1

s
t, (5.35)

where we have set the constant of integration to 0. Solving for θ, we are lead
to the moving one-soliton solution

θ(x, t) = 2 tan−1(esx+ 1
s t),

We carry out the parametrization using the BT equations in 5.26. Again,
assuming ω is arbitrarily close to zero, the equations reduce to

(sinσ)θu = sin θ,

(sinσ)θv = cosσ sin θ.
or

(csc θ)θu = 1/ sinσ

(csc θ)θv = cosσ/ sinσ
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Rewriting the equations in differential form

d [ln tan( θ2 )] =
1

sinσ
du+

cosσ

sinσ
dv,

we can integrate immediately,

ln tan( θ2 ) =
u+ v cosσ

sinσ
= χ. (5.36)

Here we have used χ to denote the expression on the right hand side and we set
the integration constant to 0. In terms of these coordinates, the moving soliton
solution is

θ(u, v)) = 2 tan−1(eχ).

Using the same degenerate patch 5.34, the parametrization of the surface be-
comes

x̂ = (0, 0, u) + sinσ[cos θ(0, 0, 1) + sin θ(cosφ, sinφ, 0)],

= (sinσ sin θ cosφ, sinσ sin θ sinφ, u− sinσ cos θ)).

Finally, using the results in equations 5.10, we rewrite the parametrization of
Dini’s surface as

x̂ = (sinσ cosφ sechχ, sinσ sin θ sinφ sechχ, u− sinσ tanhχ)). (5.37)

Notice that as expected, when σ = π/2, that is, when sinσ = 1, we get χ = u,
and the equation reduces to a pseudosphere (see equation 5.10). Another com-
mon parametrization of Dini’s surface in which the geometry is more intuitive
is given by:

x(u, v) = ( a cosu cos v, a cosu sin v, a(cosu+ ln tan(
u

2
)) + bv ). (5.38)

This surface has curvature K = −1 when a2 + b2 = 1, and it has an unfolding
infundibular shape, as shown in figure 5.5, with parameters u ∈ [0, 2], v ∈ [0, 4π]
and a = 1, b = 0.5, 0.2. The surface is essentially generated by revolving the
tractrix profile curve of the pseudosphere about the central axis, while at the
same time translating the curve at a constant rate parallel to the axis. The
meridians traced by the parametric curves u =constant are helices. When
b = 0, the equation gives a pseudosphere.

5.1.15 Example Kuen surface
Applying the permutability theorem 5.32 to solution 5.1.4 we obtain immedi-
ately the two-soliton solution

Ω = 2 tan−1

[
s2 + s1

s2 − s1

es1t+
1
s1
t − es2t+

1
s2
t

1 + e(s1+s2)t+( 1
s1

+ 1
s2

)t

]
. (5.39)

In this example, we perform a Bianchi transformation of a one-soliton pseudo-
sphere to obtain a Kuen surface which is associated with a two-soliton solution.
We begin with the parametrization of a pseudosphere given by 5.10 with a = 1,

x(u, v) = (sechµ cos v, sechµ sin v, (µ− tanhµ)).
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Fig. 5.5: Dini’s Surface

Let ω = 2 tan−1(eµ), so that

µ = ln tan(ω/2),

Then,

ω = 2 tan−1(eµ),

sinω = sechµ,

cosω = − tanhµ.

We will find θ by solving the Bianchi equations 5.30. We compute:

ωµ =
2eµ

1 + e2µ
=

2

eµ + eµ
= sechµ,

ωv = 0.

Substituting into the Bianchi equations, we get:{
θµ = − sin θ tanhµ,

θv = − cos θ sechµ− sechµ = − sechµ(1 + cos θ) = −2 cos2( θ2 ) sechµ.

Separate variables {
csc θ θµ = − tanhµ,

1
2 sec2( θ2 ) θv = − sechµ,

and integrate. The result is:{
tan( θ2 ) = −h1(v) sechµ,

tan( θ2 ) = −v sechµ+ h2(µ),

where h1 and h2 are the arbitrary functions of integration. Consistency of the
equations requires h1 = 1 and h2 = 0. The solution is therefore

tan( θ2 ) = −v sechµ =
−v

coshµ
,

θ = 2 tan−1(−v sechµ).
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Only the cosine and the sine of the angle θ enter into the Bianchi coordinate
patch. Thinking of tan( θ2 ) as the ratio of the opposite over the adjacent side

of the right triangle with hypothenuse
√

cosh2 µ+ v2, we can compute the sine
and cosine from the double angle formulas:

cos θ = cos2( θ2 )− sin2( θ2 ) =
cosh2 µ− v2

cosh2 µ+ v2
,

sin θ = 2 sin( θ2 ) cos( θ2 ) =
−2v coshµ

cosh2 µ+ v2
.

It remains to go through the algebraic gymnastics of computing the coordinate
patch:

x̂ = x +
cos θ

cosω
xu +

sin θ

sinω
xv,

= ( sechµ cos v, sechµ sin v, (µ− tanhµ) )

− cos θ

tanhµ
( − sechµ tanhµ cos v,− sech tanhµ sin v, tanh2 µ )

+
sin θ

sechµ
( − sechµ sin v, sechµ cos v, 0 ),

= ( sechµ cos v, sechµ sin v, (µ− tanhµ) )

+ cos θ( sechµ cos v, sech sin v,− tanhµ )

+ sin θ( − sin v, cos v, 0 ),

Fig. 5.6: Surfaces with K= -1

The x-component of x is:

x(x) = (1 + cos θ) sechµ cos v − sin θ sin v

=

[
1 +

cosh2 µ− v2

cosh2 µ+ v2

]
cos v +

[
2v coshµ

cosh2 µ+ v2

]
sin v,

=

[
2 cosh2 µ

cosh2 µ+ v2

]
cos v +

[
2v coshµ

cosh2 µ+ v2

]
sin v,

=
2 coshµ(cos v + v sin v)

cosh2 µ+ v2
.
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The computation of the other two components is left as an exercise. The result
is

x(u, v) =

(
2 coshµ(cos v − v sin v)

cosh2 µ+ v2
,

2 coshµ(sin v − v cos v)

cosh2 µ+ v2
, µ− 2 sinh 2µ

cosh2 µ+ v2

)
(5.40)

The Kuen surface in figure 5.6a is plotted with parameters u ∈ [−1.4, 1.4] and
v ∈ [−4, 4].

As noted by Terng and Uhnlenbeck [38], if in the 2-soliton equation 5.39
one sets s1 = eiθ and s2 = −e−iθ, we get a real-valued solution

φ = 2 tan−1

[
sin θ sin(η cos θ)

cos θ cosh(ξ sin θ)

]
, (5.41)

where ξ = x − t and η = x + t. This is a periodic solution called a breather.
A rendition of the surface associated with this solution is shown in figure 5.6,
using the parametrization derived by Rogers and Schief [31].

5.2 Minimal Surfaces

5.2.1 Minimal Area Property

In an earlier chapter we defined a minimal surface to be a surface of mean
curvature H = 0. From the formula for the mean curvature 4.65, a surface in
R3 is minimal if

2H = Tr(g−1b) = 0, which implies Eg − 2Ff +Ge = 0.

For historical reasons we first consider this condition for a surface with equation
z = f(x, y). We rewrite in parametric form using a Monge coordinate patch

x(x, y) = (x, y, f(x, y) )

A quick computation yields the coefficients of the first and second fundamental
forms.

E = 1 + fx
2,

G = 1 + fy
2,

F = fxfy,

and

e = fxx/D,

g = fyy/D,

f = fxy/D,

where D =
√
EG− F 2 =

√
1 + fx

2 + fy
2. The surface has Gaussian curvature

K = 0 if f(x, y) satisfies the Monge-Ampere equation

fxxfyy − f2
xy = 0.

We have already determined that the solutions are developable surfaces. The
condition H = 0 for having a minimal surface is that f(x, y) satisfies the quasi-
linear differential equation:

(1 + fx
2)fxx − 2fxfyfxy + (1 + fy

2)fyy = 0. (5.42)
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Using the notation p = fx, q = fy the condition that the surface area over a
region be minimal, follows from the variational equation:

δ

∫ ∫ √
EG− F 2 dy dx = δ

∫ ∫ √
1 + p2 + q2 dy dx,

= δ

∫ ∫
F (z, x, y, p, q) dy dx = 0.

The Euler-Lagrange equation for this functional is

∇ ·
[

∇f
1 + |∇f |2

]
=

d

dx

p√
1 + p2 + q2

+
d

dy

q√
1 + p2 + q2

= 0. (5.43)

It was proved by Lagrange in 1762, that these are equivalent to the condition
H = 0 exemplified in equation 5.42, but he was unable to find non-trivial
solutions. In 1776 Meusnier showed that the catenoid and the helicoid satisfied
Euler-Lagrange equations 5.43 and thus had zero mean curvature.

5.2.1 Example Scherk’s surface
The catenoid and the helicoid remained the only known minimal surfaces until
1830, when Scherk obtained a new solution under the assumption that f(x, y)
has the special form.

f(x, y) = U(x) + V (y)

In this case, the minimal surface equation 5.42 can be separated

U ′′(1− V ′2) + V ′′(1 + U ′2) = 0,

U ′′

1 + U ′2
= − V ′′

1 + V ′2
= C.

The ordinary differential equations only involve the first and second derivatives
of the variables, so they can be easily integrated. First, we let R = U ′, and
solve for U , setting the integration constants to zero.

R′

1 +R2
= C,∫

R

1 +R2
dR =

∫
C dx,

tan−1R = Cx,

U ′ = tan(Cx)

U = ln[secCx].

The integral for V is done the same way, and the result is V = − tan[ln sec y],
so

f(x, y) = ln[secCx]− ln[secCy].

Setting C = 1 and rewriting in terms of cosines, we get

f(x, y) = ln
cos y

cosx
. (5.44)
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Fig. 5.7: Scherk’s Surface.

This is the classical, doubly periodic Scherk surface which we render in figure
5.7.

Next, we prove the area-minimizing property for more general surfaces with
zero mean curvature. The integrand in the formula for surface area is the
square root of the determinant of the first fundamental form, so to perform a
variation, we will need to take derivatives of determinants. The main idea in
obtaining a formula for the derivative of a determinant rests on a neat result
from linear algebra which at the risk of digressing a bit, it is worth proving now.
This theorem due to Jacobi, will be most important later when we discuss the
exponential map in the context of Lie groups and Lie algebras (See section
7.2.1).

5.2.2 Theorem Let A be a square matrix. Then

det eA = eTrA. (5.45)

Proof First consider the case where A is a diagonal n × n matrix A =
diag[κ1, κ1, . . . , κn] by an . Defining eA by the exponential power series (See
equation 7.52), it is immediately verified that:

eA = diag[eκ1 , eκ2 , . . . , eκn ],

det eA = eκ1eκ2 . . . eκn ,

= eTrA.

Next, consider the case where A is diagonalizable. Then, there exists a similarity
transformation Q such that A = Q−1DQ, where D is the diagonal matrix with
the eigenvalues along the diagonal, D = diag[κ1, κ1, . . . , κn]. We recall that
determinant and trace are invariant under similarity transformations. We have

A2 = (Q−1DQ)(Q−1DQ),

= Q−1D(QQ−1)DQ,

= Q−1DIDQ,

= Q−1D2Q.
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By induction, we can easily prove that An = Q−1DnQ and hence,

eA =

∞∑
n=0

1

n!
An,

=

∞∑
n=0

1

n!
Q−1DnQ,

= Q−1(

∞∑
n=0

1

n!
Dn)Q,

= Q−1eDQ,

detA = detQ−1(det eD) detQ,

= det eD = eTrD = eTrA.

Finally, A might not diagonalizable, but it can be reduced to canonical Jordan
form J by a similarity transformation A = Q−1JQ. The Jordan matrix J
has the eigenvalues along the diagonal. with a block structure of the form
Jλ = λI + N , where N is nilpotent, it remains true that det eJ = eTr J . Thus
the argument above holds in this case as well.

Back to our topic. If in equation 5.45 we replace A by lnA, we get,

detA = eTr(lnA). (5.46)

Suppose that instead of single matrix A, we have a C∞, one-parameter family of
matrices At. Then, we can use the equation above to differentiate with respect
to t.

d

dt
detAt = eTr(lnAt)

d

dt
(Tr(lnAt)), hence,

= (detAt) Tr
d

dt
lnAt,

= (detAt)Tr(At
−1 dAt

dt
) (5.47)

We unpack this formula for a special kind of variation defined as follows:

5.2.3 Definition Let x(u, v) : U → R3 be a coordinate patch for a surface
{M, g} defined over a set U ⊂ R2, and let φ : U → R be a C∞ function.
A normal deformation of the surface is a one-parameter family of surfaces Mt

with coordinate patches of the form xt(u, v) = x(u, v) + tφ(u, v)n, where t is a
small parameter, t ∈ [−ε, ε], and n is the unit normal.

Let gt be the matrix of the first fundamental form induced on the surface
Mt and let det(gt) denote the determinant. The elements of surface area are
dSt =

√
det(gt) du ∧ dv, and the areas are given by:

At =

∫ ∫
U

dSt =

∫ ∫
u

√
det(gt) du ∧ dv. (5.48)
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At t = 0, g0 = g and dSo = dS represent the metric and the differential of
surface area element of M . We have the following theorem:

5.2.4 Theorem The variation of surface area satisfies

A′t(0) = −2

∫ ∫
U

φHdS, (5.49)

so that A′t(0) = 0 if, and only if, H = 0.
Proof The proof is by computation, using the formula 5.47 for derivatives of
determinants.

d

dt
At =

d

dt

∫ ∫
U

dSt =

∫ ∫
U

d

dt
dSt,

=

∫ ∫
U

1

2
√

det(gt)

d

dt
det(gt) du ∧ dv,

=

∫ ∫
U

1

2
√

det(gt)
det(gt)Tr(gt

−1 dgt
dt

) du ∧ dv,

=
1

2

∫ ∫
U

Tr(gt
−1 dgt

dt
) dSt.

It remains to compute the derivative of the one-parameter family of first fun-
damental forms along the normal deformation.

dxt = dx + t(φ dn + dφ n),

< dxt, dxt > =< dx, dx > +2tφ < dx, dn > +O(t2),

It = I − 2φ t II + O(t2),

(gt)αβ = gαβ − 2φ t bαβ + O(t2).

Therefore,
d

dt
gt|t=0 = −2φ b

We deduce that

A′t(0) = −
∫ ∫

U

φTr(g−1b) dS = −2

∫ ∫
U

φHdS,

for any function φ, so this concludes the proof. A more complete proof would
include analysis of the second variation, but this will not be treated in these
notes.

5.2.5 Example Surface of revolution
Let M be a surface of revolution that is also a minimal surface. The standard
coordinate patch is given by 4.7

x(r, φ) = (r cosφ, r sinφ, f(r))
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with fundamental form coefficients

E = 1 + f ′2,

F = 0,

G = r,
and

e = f ′′/
√

1 + f ′2,

f = 0,

g = rf ′/
√

1 + f ′2.

For this to be a minimal surface we must have:

H = Eg +Ge = 0,

rf ′(1 + f ′2) + r2f ′′ = 0.

The equation is easily integrated. Let p = f ′, separate variables and integrate
by partial fractions:

rp′ = p(1 + p2),

1

p(1 + p2)
dp = −1

r
dr,

p√
1 + p2

=
A

r
,

where A is a constant of integration. Squaring both sides and solving for p = f ′

we get:

p2r2 = A2(1 + p2),

p = f ′ =
A√
r2 − 1

,

f = A cosh−1 r.

The conclusion is that a catenoid is the only minimal surface of revolution. The
mean curvature is not a bending invariant because it depends specifically on
the second fundamental form. However, it is notable by a short computation,
that the deformation described in equation 4.116 that bends a catenoid into a
helicoid, results on a one-parameter family of minimal surfaces zt, independent
of t. A surface of type x = (r cosφ, r sinφ, h(φ)) is a called a conoid. The
helicoid is the only minimal surface that is also a conoid.

5.2.2 Conformal Mappings

In this section we explore the connection between minimal surfaces and
conformal maps. For this purpose, it will be useful to insert a pedestrian review
of some basic concepts in complex variables. We denote by C the usual vector
space of complex numbers of the form z = x + iy. Complex numbers can also
be represented by antisymmetric matrices[

x y
−y x

]
,
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in which the binary algebraic operations are mapped to matrix operations.
Thus, for example, multiplying two complex numbers z1z2, is equivalent to mul-
tiplying the corresponding matrices. By Euler’s formula, any complex number
of unit length can be written in the form z = eiθ = cos θ + i sin θ. The matrix
version of a unit vector is a rotation matrix[

cos θ sin θ
− sin θ cos θ

]
.

The set all such matrices forms a group called SO(2). There are two special
elements in this set that comprise a basis for the vector space, the identity
matrix I and the symplectic matrix

J =

[
0 1
−1 0

]
. (5.50)

The former corresponds to a rotation matrix with θ = 0 and the latter to a
rotation by θ = π/2. Clearly J2 = −I, showing that J plays the role of the
imaginary number i in the matrix representation.
A fundamental result from complex variables is that if a function w = f(z) =
u+iv is differentiable in the complex sense (i.e. holomorphic), then the following
properties hold:

1. The real and imaginary parts satisfy the Cauchy-Riemann equations ux =
vy; uy = −vx.

2. The functions u and v are (conjugate) harmonic: ∇2u = ∇2v = 0.

3. the families of curves u(x, y) =constant and v(x, y) =constant, are mu-
tually orthogonal. That is, (Grad u,Grad v) = 0. In the context of heat
flow these curves are called isothermal lines.

4. The map is conformal, that is, it preserves angles. The conformal factor
is given by the Jacobian |f ′(z)|2 = |∇u|2 = |∇v|2. In vector component
notation, if z = (x, y)T and h = (k1, k2)T , then by differentiability,

f(z + h) = f(z) +Df(h) + ε,

where Df is the Jacobian map f ′ and ε→ 0 as h→ 0. From the Cauchy
Riemann equations at any given point, we have

Df(h) =

[
xu xv
yu yv

] [
k1

k2

]
,

=

[
a −b
b a

] [
k1

k2

]
,

=
√
a2 + b2

[
cos θ − sin θ
sin θ cos θ

] [
k1

k2

]
,

for some numbers a, b and some angle θ. Thus, the transformation consists
locally of a dilation and a rotation.
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5. Let z = x+ iy and z = x− iy. The chain rule gives:

∂z ≡ ∂
∂z = 1

2

(
∂
∂x − i

∂
∂y

)
, ∂z ≡ ∂

∂z = 1
2

(
∂
∂x + i ∂∂y

)
.

6. w = f(z) is holomorphic if and only if ∂zf = ∂f
∂z = 0. This is equivalent

to the Cauchy-Riemann equations.

7. I = dx2 + dy2 = dzdz, and ∆f ≡ fxx + fyy = 4 ∂2f
∂z∂z.

Since R2 as a vector space is isomorphic to C, we can extend the complex
structure to a surface M in R3 by requiring that the locally Euclidean property
be replaced by complex coordinate patches that are holomorphic. This can
actually be done intrinsically for an oriented surface by introducing a (1, 1)
tensor J : TM → TM so that for an orthogonal basis {e1, e2} of the tangent
space, J(e1) = e2 and J(e2) = −e1. This results on a matrix representation
of J at each point identical to the symplectic matrix 5.50 and it represents
a rotation by π/2. The tensor J can always be introduced in any coordinate
patch by starting with xu or xv and using the Gram-Schmidt process to find
an orthogonal vector. An easy computation gives:

v1 = xu, v2 = xv −
F

E
xu =

Exv − Fxu
E

,

w1 = xv, w2 = xu −
F

G
xv =

Gxu − Fxv
G

. (5.51)

Orientation is preserved if the differential of surface satisfies dS(X,J(X)) > 0
for all X 6= 0. Since J represents a rotation by π/2, there must be constants
c1 and c2 such that Jxu = c1(Exv − Fxu) and Jxv = c2(Fxv −Gxu). Setting
‖xu‖2 = ‖Jxu‖2 and ‖xv‖2 = ‖Jxv‖2 we find that c1 = c2 = 1/

√
det g, hence,

the components of J in the parametric coordinate frame are

Jxu =
Exv − Fxu√
EG− F 2

,

Jxv =
Fxv −Gxu√
EG− F 2

. (5.52)

5.2.6 Definition Let {M, g} and {M ′, g′} be Riemannian manifolds. A map
F : M →M ′ is called conformal if there exists a function λ, such that

< F∗X,F∗Y >′= λ2 < X,Y >, (5.53)

for all tangent vectors. If λ = 1, the map is an isometry.
Conformal maps on manifolds as defined above have the following properties:

1. ‖F∗X‖′2 = |λ|2‖X‖2. The reason is that ‖X‖2 =< X,X >.

2. F preserves angles, since at each point, the λ’s cancel in the formula for
the cosine of the angle as in 1.51 and 4.17.

3. F∗(J(X)) = J(F∗(X)). This is easily shown by applying the maps to
a basis and using the fact that F preserves angles and J represents a
rotation.
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5.2.3 Isothermal Coordinates

An isothermal system as in 4.117 in which the metric takes the form ds2 =
λ2 (du2 + dv2) can be considered as a map from U ⊂ R2 as a plane surface, to
M . This is an example of the most basic conformal map. As previously stated
in theorem 4.5.15, the coordinate patch in this case satisfies the equation,

xuu + xvv = 2λ2H.

The conclusion of this theorem can be restated by saying that that surface in
isothermal coordinates is a minimal surface if and only if its coordinate patch
functions are harmonic in the usual Euclidean sense.

5.2.7 Definition Given an isothermal, conformal patch x(u, v), we call a
map y(u, v) a conjugate patch if it satisfies the Cauchy-Riemann equations

xu = yv, xv = −yu. (5.54)

In complex variables, the real and imaginary parts of a holomorphic function
are conjugate harmonic functions. Given one of these, one can determine the
other by integrating the Cauchy-Riemann equations. In a similar way, given
an isothermal conformal patch, we may determine a conjugate patch and this
conjugate patch is also isothermal and conformal. The conjugate patches can
be rendered as the real and imaginary parts of a complex holomorphic patch.

5.2.8 Definition Given conjugate harmonic patches x and y, we define the
associated family to be the one-parameter family

zt = <[eit(x + iy)] = (cos t)x + (sin t)y. (5.55)

5.2.9 Existence of isothermal coordinates
The existence of isothermal coordinates is more subtle and requires some har-
monic analysis. Given {M, g} with a coordinate patch x(u, v), we seek a map
F (p) = (h(p), k(p)), in which the metric is isothermal. The condition that the
parametric curves be orthogonal means we must have (Grad h,Grad k) = 0.
Using the definition of the gradient 2.26, and recalling the components of the
inverse of the metric 4.85, we get

(Grad h,Grad k) = gαβ(∇h)α(∇k)β ,

= (∇h)α(∇k)α,

=
1

det(g)
[ku(Ghu − Fhv) + kv(Ehv − Fhu)],

=
1

det(g)
[ku(Ghu − Fhv)− kv(Fhu − Ehv)]

The equation (Grad h,Grad k) = 0 holds if there exists a function λ so that

ku = λ(Fhu − Ehv), kv = λ(Ghu − Fhv).
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To get |∇k|2 = ∇h|2 we set λ = 1/
√

det(g). The integrability condition kuv =
kvu yields the classical Laplace-Beltrami equation 4.86

∂

∂u

[
Ghu − Fhv√
EG− F 2

]
+

∂

∂v

[
Ehv − Fhu√
EG− F 2

]
= 0.

Hence, the existence of non-trivial solutions is tied to the harmonic analysis on
the existence of solutions of the elliptic operator.

A more classical approach for the analytic case was obtained by Gauss by
the simple but ingenious method of factoring the first fundamental form ds2 =
E du2 + 2F dudv +Gdv2,

ds2 =

[
√
Edu+

F + i
√
EG− F 2

√
E

dv

][
√
Edu+

F − i
√
EG− F 2

√
E

dv

]
.

The idea is to find coordinates h and k and a conformal factor λ, such that

ds2 = λ2 dh dk.

This would suffice, since having found h and k, one could set h = φ + iψ and
k = φ− iψ. Following Eisenhart [19], let t1 and t2 be integrating factors of the
system

t1

(
√
Edu+

F + i
√
EG− F 2

√
E

dv

)
= dh = hu du+ hv dv,

t2

(
√
Edu+

F − i
√
EG− F 2

√
E

dv

)
= dk = ku du+ kv dv,

where λ2 = 1/(t1t2). The first equation above is equivalent to,

t1
√
E = hu, t1

(
F + iH√

E

)
= hv,

where H =
√

det(g) =
√
EG− F 2. Solving for t1 in the first equation and

substituting on the second, we get

hu(F + iH) = Ehv, (5.56)

ihu =
Ehv − Fhu

H
. (5.57)

On the other hand, multiplying the first equation above by F − iH we get

hu(F 2 +H2) = E[F − iH]hv,

hu(F 2 + EG− F 2) = E(F − iH)hv,

EGhu = E(F − iH)hv.

Hence

ihv =
Fhv −Ghu

H
. (5.58)
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The integrability condition huv = hvu for equations 5.57 and 5.58 gives again
the Laplace Beltrami equation

∂

∂u

[
Ghu − Fhv√
EG− F 2

]
+

∂

∂v

[
Ehv − Fhu√
EG− F 2

]
= 0.

By a completely analogous computation, one can verify that k satisfies the same
integrability condition.

The existence of isothermal coordinates is closely related to the existence
of complex structures. Even for the case of 2-dimensional manifolds, if the
topological conditions on the metric are weakened, the problem is not simple
(See: [6]).

5.2.10 Exercise Let ds2 = E du2 + 2F dudv + F dv2 = ν|dz + µdz|2, where
ν > 0, |µ| < 1, and z = u+ iv.
1) Substitute du and dv in terms of dz and dz. Equate coefficients to show
that,

µ =
1

4ν
(E −G+ 2Fi), ν(1 + µµ) =

1

2
(E +G).

2) Solve the quadratic equation for ν and thus show that,

ν =
1

4
(E +G+ 2

√
EG− F 2).

3) We want ds2 = λ2dhdh = λ2|dh|2, where h = h(z, z). Show that h exists if,
and only if, it satisfies the Beltrami equation

∂h

∂z
= µ

∂h

∂z
.

5.2.11 Example Consider the unit sphere with ds2 = dθ2 + sin2 θ dφ2. We
rewrite the metric as

ds2 = sin2 θ(
1

sin2 θ
dθ2 + dφ2),

and set

du =
1

sin θ
dθ, dv = dφ.

Integrating, we see that the transformation

u = ln | tan( θ2 )|, v = φ.

gives the metric manifestly in isothermal coordinates

ds2 = sin2 θ(du2 + dv2). (5.59)

The example is technically not complete since the conformal factor is not in
terms of the new variables. This is not hard to do, but the geometry will
become more clear in the context of the sterographic projection.
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5.2.4 Stereographic Projection

Consider the unit sphere S2 : x2 + y2 + z2 = 1. for each point P (x, y, z) on
the sphere, we draw a line segment from the north pole to P and extend the
segment until it intersects the xy-plane, viewed as a copy of the complex plane,
at point ζ = X + iY . By simple ratio and proportions of corresponding sides
of similar triangles, as partially shown in 5.8, we have,

X =
x

1− z
,

Y =
y

1− z
, so that

ζ =
x+ iy

1− z
(5.60)

The map π : S2 → C projects each point P except for the north pole to
the unique complex number ζ given by the equation above. The closer the
point P is to the north pole, the larger the norm of ζ. This gives rise to the
geometric interpretation that under the stereographic projection, the north pole
correspond to the point at infinity in the complex plane. To find the inverse
π−1 of the projection, first notice that:

ζζ =
x2 + y2

(1− z)2
,

ζζ + 1 =
x2 + y2

(1− z)2
+ 1,

=
x2 + y2 + (1− z)2

(1− z)2
,

=
2− 2z

(1− z)2
,

=
2

1− z
.

Fig. 5.8: Stereographic Projection
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Combining that last equation with 5.60, we find the x, y and z coordinates on
the sphere,

π−1(ζ) = (x, y, z),

=

(
ζ + ζ

ζζ + 1
,

ζ − ζ
i(ζζ + 1)

,
ζζ − 1

ζζ + 1

)
(5.61)

The existence of the inverse map shows that the sphere is locally diffeomorphic
to the complex plane. If η represents the complex coordinate arising from the
stereographic projection from the south pole, then the transition functions on
the overlap of the coordinate patches is given by ζ = 1/η and η = 1/ζ. Thus, S2

may be considered as a complex manifold called the Riemann sphere. In polar
coordinates X = R cosφ, Y = R sinφ, so, by ratio and proportion applied to
similar triangles as in figure 5.8, we see that ‖ζ‖ = R = cot( θ2 ), and hence

ζ = cot( θ2 )eiφ,

η = tan( θ2 )e−iφ. (5.62)

The short computation that follows gives the complex metric of the Riemann
sphere in terms of the standard metric in spherical coordinates.

dζ = − 1
2 csc2( θ2 )eiφ dθ + i cot θ2e

iφ dφ,

dζ = −1

2
csc2( θ2 )e−iφ dθ − i cot θ2e

−iφ dφ,

dζdζ = 1
4 csc4( θ2 ) dθ2 + cot2( θ2 ) dφ2,

=
1

4 sin4( θ2 )
(dθ2 + sin2 θdφ2).

Using equation 5.62 again, we find:

1 + ζζ̄ = 1 + cot2 θ
2 = csc2( θ2 ),

therefore,

ds2 =
4 dζdζ

(1 + ζζ)2
= dθ2 + sin2 θ dφ2. (5.63)

This shows that the map is conformal. Looking back at equation 5.59 for the
metric of the sphere in isothermal coordinates given by the transformation

u = ln | tan( θ2 )|, v = φ,

set α = u− iv, and
η = eα = tan( θ2 )e−iφ.

Thus, we see that the transformation is effectively the stereographic projection
from the south pole. The complex version of the first fundamental form is called
the Fubini-Study metric of the Riemann sphere. If we let K be the function

K = ln(1 + ζζ), (5.64)
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then we can write the components g of the complex metric as

g = 4∂ζ∂ζ̄K.

This formula generalizes to CPn, for which

K = ln(1 + δijz
iz̄j),

ds2 = gij̄dz
idz̄j ,

gij̄ = ∂zi∂z̄jK.

The function K is called the Kähler potential. Let the ∂ and ∂̄ be the Dol-
beault operators that give the natural extension of exterior derivative in several
complex variables; that is, given a differential form if α = f

IJ
dzI ∧ dz̄J for

multi-indices I and J , we define

∂α =
∂f

IJ

∂zk
dzk ∧ dzI ∧ dz̄J ,

∂̄α =
∂f

IJ

∂z̄k
dz̄k ∧ dzI ∧ dz̄J .

Then we obtain a natural, a non-degenerate 2-form

ω
K

= i∂∂̄ K,

= i
dζ ∧ dζ̄

(1 + ζζ̄)2
. (5.65)

is called the Kähler Form of the sphere S2. Some authors include a conventional
factor of 1/2, but the factor of i is required for compatibility of the Hermitian and
the Riemannian structure. Thus, in terms of differential geometry structures in
dimension 2, this is as good as it gets. The two-sphere has a natural Riemannian
structure inherited by the induced metric from R3, a complex structure induced
by the stereographic projection, and a natural symplectic 2-form given by the
Kähler form above. This is summarized by saying that we have the structure
of a Kähler manifold. As we will see later, the Kähler form 5.65 is at the center
of the construction of Dirac monopoles and instanton bundles.
The formulas for the stereographic projection 5.60 naturally extrapolate to
spheres in all dimensions. If the unit sphere Sn ∈ Rn+1 is given by equation

(x1)2 + (x2)2 + · · ·+ (xn+1)2 = 1

then the coordinatesXi of the projection onto Rn from the north pole (0, 0, . . . , 1)
are given by

Xi =
xi

1− xn+1
, i = 1, . . . , n

In the case of the unit circle S1, the quantity ζ is a real number. Since we are
using θ as the azimuthal angle, we have the unconventional parametrization of
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the unit circle x = sin θ, y = cos θ. Then the formulas for π−1 and the metric
read:

x =
2ζ

ζ2 + 1
, y =

ζ2 − 1

ζ2 + 1
, dθ =

2ζ

ζ2 + 1
dζ. (5.66)

Hence, the substitution ζ = cot( θ2 ) transforms integrals of rational functions
of sines and cosines into rational functions of ζ. This is the source of the now
infamous Weierstrass substitution, which is more commonly written in terms of
the polar angle, t = tan( θ2 ). It is by this method that one obtains the integral
5.67, and the neat formula ∫

csc θ dθ = ln | tan( θ2 )|,

that often appear in the theory of curves and surfaces. The elegant Weierstrass
substitution is, for the wrong reasons, no longer taught as a technique of inte-
gration in the standard second semester calculus course. This author does not
disagree with those calculus reformers that pushed the topic out of the curricu-
lum at the time, but strongly disagrees with the reasons given to the effect,
that they never again encountered this in their work. There should have been a
geometer in the committee. The stereographic projection is the starting point
for the entire theory of spinors.

As an added bonus, if in equation 5.66 we pick ζ = m
n to be any rational

number on the real line, the inverse stereographic map yields a rational point
in the unit circle with entries giving Euclid’s formula for Pythagorean triplets(

2mn

n2 +m2
,
n2 −m2

n2 +m2
.

)

Fig. 5.9: Mercator Projection

5.2.12 Example Mercator Projection
Given a surface of revolution 4.7 with metric

ds2 = (1 + f ′2) dr2 + r2 dφ2,

= r2

[
1 + f ′2

r2
dr2 + dφ2

]
,
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we set

dŷ =

√
1 + f ′2

r
dr, dx̂ = dφ

ŷ =

∫ √
1 + f ′2

r
dr, x̂ = φ.

This is a conformal map into a plane with Cartesian coordinates (x̂, ŷ) in which
the meridians map to x̂ =constant, and the horizontal circles on the surface of
revolution map to parallels ŷ =constant. In particular, for a sphere in which
f(r) =

√
a2 − r2, the substitution r = a sin θ yields

ŷ =

∫
sec θ dθ = ln | tan( θ2 + π

4 )|. (5.67)

Comparing with equation 4.23, we see that in this projection, loxodromes on
the sphere map to straight lines on the plane. The projection is more faithful
near the equator as shown in figure 5.9. The map is depicted with a four-color
scheme, which it is always possible because of a famous theorem.

5.2.5 Minimal Surfaces by Conformal Maps

Consider a surface {M, g} with coordinate patch x(u, v). Let ζ = u + iv,
and ζ = u− iv, so that dζ = du+ idv, dζ = du− idv. The composite map gives
the patch as

x(ζ, ζ) = ( x1(ζ, ζ), x2(ζ, ζ), x3(ζ, ζ) ),

The complex derivative with respect to ζ of the patch is given by:

xζ =
∂x

∂ζ
= 1

2 (xu − ixv),

= (∂x
1

∂ζ ,
∂x2

∂ζ ,
∂x3

∂ζ ),

= (x1
ζ , x

2
ζ , x

3
ζ).

Let φ = 2xζ , and φ2 = 4(xζ ,xζ). Since we have chosen φ to depend only on ζ,
we have ∂ζφ = 0, so φ is holomorphic. We have the following theorem:

5.2.13 Theorem A holomorphic patch x is isothermal if and only if

φ2 = (φ1)2 + (φ2)2 + (φ3)2 = 0. (5.68)

Proof The proof is by direct computation.

φ2 = 4(∂x/∂ζ, ∂x/∂ζ),

= (xu − ixv,xu − ixv),
= (xu,xu)− (xv,xv)− 2i(xu,xv),

= E −G− 2iF.
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The theorem follows because in a isothermal patch, E = G and F = 0, so
φ2 = 0.

5.2.14 Remark The function φ is a complex function, so we must be careful
not to confuse φ2 as defined above with |φ |2 = φφ. The latter is given by

|φ |2 = 4(xζ ,xζ),

= (xu − ixv,xu + ixv),

= (xu,xu) + (xv,xv),

= E +G, (5.69)

so if the patch is isothermal, E = G = 1
2 |φ |

2

We now have a process to construct minimal surfaces. We need to find a
holomorphic patch φ with φ2 = 0. To construct such patches we introduce a
special class of complex curves.

5.2.15 Definition A complex curve φ : U ⊂ C → R2 is called a minimal
curve or an isotropic curve if the differential of arc length

ds2 = (dx1)2 + (dx2)2 + (dx3)2 = 0.

To find such curves we once again we take advantage of the wonderful ingenuity
of the leading mathematicians in the 1800’s. Factoring over the complex, we
have

(dx1 + i dx2)(dx1 − i dx2) + (dx3)2 = 0,

(dx1 + i dx2)(dx1 − i dx2) = −(dx3)2,

dx1 + i dx2

dx3
= − dx3

dx1 − i dx2
.

Setting the left hand side equal to some function −τ we get a pair of differential
equations

dx1

dx3
+ i

dx2

dx3
= −τ,

dx1

dx3
+ i

dx2

dx3
=

1

τ
.

If we add the two equations we get:

dx1

dx3
=

1

τ
− τ,

=
1− τ2

τ
,

dx1

1− τ2
=
dx3

2τ
.
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Subtracting the equations instead, we get:

2i
dx2

dx3
= −τ − 1

τ
,

= −1 + τ2

τ
,

dx1

i(1− τ2)
=
dx3

2τ
.

Thus, we are lead to the following equation:

dx1

1− τ2
=

dx2

i(1 + τ2)
=
dx3

2τ
= F (τ) dτ (5.70)

for some arbitrary analytic function F . At the end, we want real geometric
objects, so we integrate and extract the real part.

x1 = <
∫ z

(1− τ2)F (τ) dτ,

x2 = <
∫ z

i(1 + τ2)F (τ) dτ,

x3 = <
∫ z

2τF (τ) dτ. (5.71)

This choice of coordinates satisfies the condition φ2 = 0 for an isothermal patch.
Although a bit redundant, this can be verified immediately.

φ = F (1− τ2, i(1 + τ2), 2τ)

φ2 = F 2[(1− τ2)2 + i2(1 + τ2)2 + 4τ2] = 0.

Equations 5.71 are the classical Weierstrass coordinates from which one ascer-
tains that a holomorphic function F (τ) gives rise to a minimal surface.

Fig. 5.10: Enneper Surface

5.2.16 Example Enneper surface
This is the surface corresponding to a Weierstrass patch with the simplest, non-
trivial holomorphic function, namely a constant F (τ) = a which choose to be



176 CHAPTER 5. GEOMETRY OF SURFACES

a = 3. The surface was discovered by Enneper in 1864. Integration of 5.71 with
F (τ) = 3 gives,

x1 = <(3τ − τ3) = 3u+ 3uv2 − u3,

x2 = < [i(3τ + τ3)] = −3v − 3u2v + v3,

x3 = <(3τ2) = 3(u2 − v2),

resulting in the coordinate patch

x(u, v) = (3u+ 3uv2 − u3,−3v − 3u2v + v3, 3(u2 − v2)). (5.72)

If one sets τ = reφ a polar coordinate parametrization is obtained

x(r, φ) = (3r cosφ− r3 cos 3φ,−3r sinφ− 3r3 sin 3φ, 3r2 cos 2φ). (5.73)

Figure 5.10 shows some Enneper surfaces, the first with u and v ranging from 0
to 1.2 and the second for r ∈ [0, 2], φ ∈ [π, π]. The surface is self-intersecting if
the range is big enough. In the polar parametrization K = −(4/9)/(1 + r2)−4

and of course H = 0. Using an advanced algebraic geometry technique called
Gröbner basis, one can eliminate the parameters and show that the surface
is algebraic, and that it can be written implicitly in terms of a ninth degree
polynomial. As will be discussed later in equation 5.79, there is an alternate
way to write the Weierstrass parametrization. In this alternate formulation, the
classical Enneper surface is generated by f = 1 and g = σ. A generalization of
the Enneper surface is obtained by taking g(σ) = σn, where n+1 is the number
of “flaps” bending up. The surface on the right of figure 5.10 corresponds to
the case n = 3.

Setting r =constant in the polar form of the Enneper surface, we get curves
that are not spherical curves, but they are close. On the left of Figure 5.11 we
display the intersection of an Enneper surface with a sphere.

Fig. 5.11: Baseball Seam

This raises the fun problem of finding a curve that is actually spherical and
resembles the seam of a tennis ball or a baseball. We explore this possibility
with a curve of the form

x(r, φ) = (a cosφ− b cos 3φ, a sinφ+ b sin 3φ, c cos 2φ),
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and requiring it to have a constant norm. A short computation using the sum
and half-angle formulas for cosine, gives

‖x‖2 = a2 + b2 − 2ab cos 4φ+ c2 cos2 2φ,

= a2 + b2 − 2ab cos 4φ+ c2

2 (1 + cos 4φ),

= a2 + b2 + c2

2 + ( c
2

2 − 2ab) cos 4φ.

To make this length constant, independently of φ, we set c2 = 4ab, which
remarkably, leads to the norm being a perfect square ‖x‖2 = (a + b)2. A nice
choice leading to all integer coefficients is a = 9, b = 4 which gives c = 12. The
graph shown on the right in figure 5.11 shows that this results on a reasonable
shape for the seam of a baseball. Personally, I find this more gratifying than
the baseball I hand-made as a kid because I could not afford one. I lost that
ball in the first pitch when an older boy hit a home run into a pig sty.

5.2.17 Example Catenoid
As we would expect, the ubiquitous catenoid can be obtained from the Weier-
strass parametrization. Anticipating a coordinate patch with cosh functions,
we choose F (τ) = −a/τ2 and then let τ = ew = eu+iv. Integration, followed by
an application of the summation formulae for hyperbolic functions, we get:

x1 = −a<
∫

[(1/τ2)− 1] dτ,

= −a< [(−1/τ)− τ ],

= a< [ew + e−w] = a< [coshw],

= a< [cosh(u+ iv)],

= a coshu cos v.

In a similar manner,

x2 = −a<
∫
i[(1/τ2) + 1] dτ ],

= −a< {i[(−1/τ) + τ)]},
= −a< {i[ew − e−w]} = −a<[i sinhw],

= −a< [i sinh(u+ iv)],

= a coshu sin v.

The last integration is a one-liner

x3 = −2a <[ln τ ] = −2a <(w) = −2au.

The result is the catenoid

x(u, v) = (a coshu cos v, a coshu sin v,−2au).

5.2.18 Example Henneberg Surface
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Fig. 5.12: Henneberg Surface

This surface was discovered in 1875 by the German mathematician Lebrecht
Henneberg. The surface can be obtained from Weierstrass coordinates 5.71 by
choosing F (τ) = 1−1/τ4 and then letting τ = ew = eu+iv. In a manner similar
to the computation above, we integrate the equations and follow by an applying
the summation formulæfor hyperbolic functions.

x1 = <
∫

[(1− τ2)(1− 1/τ4)] dτ,

= <
∫

[1 + 1/τ2 − τ2 − 1/τ4)] dτ,

= < [(τ − 1/τ)− (1/3)(τ3 − 1/τ3), ]

= 2< [sinhw − (1/3) sinh 3w],

= 2< [sinh(u+ iv)− (1/3) sinh 3(u+ iv)],

= 2 sinhu cos v − (2/3)(sinh 3u cos 3v).

The integral for x2 gives ,

x2 = <
∫
i[(1 + τ2)(1− 1/τ4)] dτ,

= <
∫
i[1− 1/τ2 + τ2 − 1/τ4)] dτ,

= < {i[(τ + 1/τ) + (1/3)(τ3 + 1/τ3)]},
= 2< {i[coshw + (1/3) cosh 3w]},
= 2< {i[cosh(u+ iv) + (1/3) cosh 3(u+ iv)]},
= −2 sinhu sin v − (2/3)(sinh 3u sin 3v).



5.2. MINIMAL SURFACES 179

The last integration is a bit simpler

x3 = <
∫

[2τ(1− 1/τ4)] dτ,

= <
∫

[2τ − 2/τ3] dτ,

= < [(τ2 + 1/τ2)],

= 2< [cosh 2w],

= 2< [cosh 2(u+ iv)],

= 2 cosh 2u cos 2v.

Neglecting the factor of 2 and using a common abbreviation for the hyperbolic
functions, the result is:

x(u, v) = (sh u cos v− 1
3 (sh 3u cos 3v),−sh u sin v− 1

3 (sh 3u sin 3v), ch 2u cos 2v).

The curve given by v = 0 is a geodesic in the shape of a semicubical parabola
which is the intersection of the surface with the plane y = 0. This is a reflection
of the fact the a Hennerberg surface is a Björling surface, that is, a minimal
surface that contains a given curve with prescribed normal. It turns out that
the Hennerberg surface is a model representing an immersion in R3 of the
projective plane.

The curvature for a minimal surface in Weierstrass coordinates can be cal-
culated from equation 4.118. Using the fact that E = G = 1

2 |φ |
2, we have,

φ = F (1− τ2, i(1 + τ2), 2τ),

|φ|2 = |F |2[(1− τ2)(1− τ2) + (1 + τ2)(1 + τ2) + 4ττ ],

= |F |2(2 + 2τ2τ2 + 4ττ),

= 2|F |2(1 + |τ |2)2.

The conformal factor is E = λ2 = 1
2 |φ|

2, so the Gaussian curvature is given by

K = − 1

λ2
∇2(lnλ),

= −4
1

λ2

∂2

∂τ∂τ
[ln(|F |(1 + |τ |2))],

= −4
1

λ2

∂2

∂τ∂τ
[ 1
2 (lnF + lnF ) + ln(1 + |τ |2)],

= −4
1

λ2

∂2

∂τ∂τ
[ln(1 + |τ |2)],

= −4
1

λ2

∂

∂τ
[

τ

(1 + |τ |2)
],

= −4
1

λ2

(1 + ττ)− ττ
(1 + |τ |2)2

= −4
1

λ2

(1

(1 + |τ |2)2
.
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So, the result is,

K ==
−4

|F |2(1 + |τ |2)4
=

−4

|F |2(1 + u2 + v2)4
. (5.74)

There is an equivalent formulation of Weierstrass parametrization that also
appears frequently in the literature. From equation 5.68, the holomorphic patch
x is isothermal if

(φ1)2 + (φ2)2 + (φ3)2 = 0. (5.75)

Proceeding along the same lines as in the computation of isotropic coordinates,
we have

(φ1 + iφ2)(φ1 − iφ2) = −(φ3)2,

(φ1 + iφ2) = − (φ3)2

(φ1 − iφ2)
. (5.76)

Set

f = (φ1 − iφ2), g =
φ3

(φ1 − iφ2)
. (5.77)

Here, f is holomorphic, g is meromorphic, but fg2 = −(φ1+iφ2) is holomorphic.
Since we also have fg = φ3, we can easily solve for the components of φ in terms
of f and g. The result is,

φ1 =
1

2
f(1− g2),

φ2 =
i

2
f(1 + g2),

φ3 = fg. (5.78)

Since φ = xu − ixv, we are led to an alternative Weierstrass parametrization

x = <
∫ z 1

2
f(σ)(1− g(σ)2) dσ,

y = <
∫ z i

2
f(σ)(1 + g(σ)2) dσ,

z = <
∫ z

f(σ)g(σ) dσ. (5.79)

For easy reference, we denote this parametrization by the notation x =W(f, g).
To see the relationship to the equations 5.71, consider the case when g is
holomorphic and g−1 is holomorphic. Then, can use g as the complex vari-
able, and we set g = τ , so that dg = dτ . Let F = 1

2f/
dg
dσ = 1

2f
dσ
dg . Then

F (τ)dτ = 1
2f(σ)dσ and we have recovered equation 5.71. Choosing minus the

imaginary parts in equation 5.79 yields conjugate minimal surfaces, given by
the conjugate harmonic patch y as defined by equation 5.54.

A remarkable result can be obtained as follows. As a complex variable, g
can be mapped into the unit sphere S2 by the inverse stereographic projection



5.2. MINIMAL SURFACES 181

(See equation 5.61)

π−1(g) =
(g + g,−i(g − g), gg − 1)

(gg + 1)
. (5.80)

On the other hand, the real and imaginary parts of φ = xu − ixv comprise two
orthogonal tangent vectors to the surface. We compute the dot product

(φ, π−1g) =
f

2(gg + 1)
[(1− g2)(g + g) + (1 + g2)(g − g) + g(|g|2 − 1)],

=
f

2(gg + 1)
[(g + g) + (g − g)− g2(g + g − g + g) + 2g|g|2 − 2g],

=
f

2(gg + 1)
[2g − 2g2g + 2g|g|2 − 2g],

= 0.

We conclude that π−1g is a unit normal to the surface, and thus we have the
following theorem,

5.2.19 Theorem If x(ζ, ζ) is an isothermal holomorphic patch with φ =
2xζ = xu − ixv, then the function g = φ3/(φ1 − iφ2) in the Weierstrass
parametrization W(f, g) of a minimal surface, is the stereographic projection π
of the Gauss map. That is,

π ◦N = g, (5.81)

where as usual, N = (xu × xv)/‖xu × xv‖.
Rewriting the expression for the Gaussian curvature 5.74 in terms of f and g,
we get,

K = −
[

4|g′|
|f |(1 + |g|2)

]2

. (5.82)

We see immediately that the one-parameter family of associated patches zt
given by

zt = <(eitφ), (5.83)

results on a family of isometric minimal surfaces. This provides another way to
view the deformation of a catenoid into a helicoid described earlier in equation
4.116.

5.2.20 Example Bour surface
The surfaceW(f, g), with f = 1 and g =

√
σ was first discussed in 1861 by Bour,

who subsequently was awarded the mathematics prize of the French Academy
of Sciences. The integrals are completely elementary,

x1 = 1
2<

∫ z

(1− σ) dσ = 1
2< [z − 1

2z
2],

x2 = i
2<

∫ z

(1 + σ) dσ = 1
2< [z + 1

2z
2],

x3 = 2
3< [z3/2].
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Fig. 5.13: Bour and Trinoid Surfaces

Converting to polar form, we get the parametrization.

x(r, φ) = (1
2r cosφ− 1

4r
2 cos 2φ,− 1

2r sinφ+ 1
4r

2 sin 2φ, 2
3r

3/2 cos( 2
3φ).) (5.84)

The surface in rendered in figure 5.13a, with r ∈ [0, 4].

5.2.21 Example Trinoid surface

This surface is part of family of surfaces indexed by f = 1
(σk−1)2

, g = σk−1,

where k = 2, 3 . . . . These remarkable surfaces have neat topologies discovered
by Jorge and Meeks in 1983. The binoid case k = 2 is just a catenoid. The
trinoid corresponds to k = 3. The integrals for the trinoid yield the following
parametrization

x1 = <
[
−2

9
ln(z − 1) +

z

6(z2 + z + 1)
+

1

9
ln(z2 + z + 1)

]
,

x2 = −1

9
Im

[
1

z − 1
+

z + 2

2(z2 + z + 1)
− 2
√

3 tan−1( 1√
3
(2z + 1))

]
.

x3 = −<
[

1

3(z3 − 1)

]
,

where z = u + iv. The algebra involved in finding the real coordinate patch
is messy, so the task is best left to a computer algebra system. Converting to
polar coordinates by letting z = reiφ improves rendering the surface plot. As
shown in the portion of the surface figure 5.13b, the surface has three openings,
meaning that the Gauss map misses three points on S2. In the same manner,
the k-noid is topologically equivalent to a sphere with k points removed.

For convenient reference, we include the following table showing the choices
of f and g yielding the listed minimal surfaces.
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f g Surface Author, Date
−eit/2, t = 0 e−σ Catenoid Euler, 1740

−eit/2, t = π/2 e−σ Helicoid Meusnier, 1770

2/(1− σ2) σ Scherk Scherk, 1834

1
√
σ Bour Bour, 1861

1 σ Enneper Enneper, 1863

2(1− σ−4) σ Henneberg Henneberg, 1875

(σ3 − 1)−2 σ2 Trinoid Jorge and Meeks, 1983

℘ A/℘′ Costa Costa, 1996

If I had to pick a minimal surface to represent the “orchid” which is the
national flower of my native country, I would pick the Costa surface. This
surface was not discovered until 1982, triggering a renewed interest on minimal
surfaces with non-trivial topologies. A parametrization was not produced until
1996. The integrals involve Weierstrass elliptic functions, which probably would
have been most pleasing to Weierstrass, but requires more advanced knowledge
than is typically covered on introductory courses on complex variables. The
Weierstrass elliptic function ℘(z) is implemented in Maple as,

WeierstrassP(z, g2, g3) =
1

z2
+
∑
ω

(
1

z − ω2 −
1

ω

)
. (5.85)

Fig. 5.14: Weierstrass Elliptic Function

The functions ℘ are meromorphic with a pole of order 2 at the origin. They
are doubly periodic over an arbitrary lattice {ω = 2mω1 + 2nω2| m,n ∈ Z}
with periods ω1 and ω2. The quantities g2 and g2 are called the invariants and
are related to ω1 and ω2. In the Maple implementation, the periods are set to
ω1 = ω2 = 1

2 , which does not result in any real loss of generality. A salient
property of the invariants is that they link ℘ to the cubic differential equation

(℘′)2 = 4(℘)3 − g2℘− g3. (5.86)

Costa’s surface is generated by setting f = ℘ and g = A/℘′.
Following Alfred Grey, as shown in Eric Weisstein’s Wolfram Mathworld

[40], we pick g2 = 189.07272, g3 = 0 and A =
√

2πg2. As we have done before,
we first try simply inserting the choices of f and g into W(f, g), integrating
with maple with the substitution z = u+ iv, and then extracting the real part.
The result is a bit disconcerting as one obtains expressions with Weierstrass ζ
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Fig. 5.15: Costa’s Minimal Surface

function with very large coefficients of the order of 106. The problem becomes
immediately clear by observing a plot of the real part ℘ as shown in figure
5.14. The W(f, g) coordinates are integrated by default from 0 to z, so the
problem is caused by the pole of order 2 at the origin. Still, one may persist
by proceeding to plot the surface by restricting the values of u and v to stay
away from the singularities. We chose the ranges to go from 0.02 to 0.98.
Surprisingly, Maple takes some time to compute, but it renders the beautiful
flowery-shaped curve that appears at the left on figure 5.15. While aesthetically
pleasing, the figure is topologically inaccurate. A much more rigorous analysis
such as done by A. Grey in deriving the coordinates quoted at the Mathworld
site, lead to the widely diffused picture of Costa’s surface that appears on the
right. Costa’s surface is topologically equivalent to a torus (genus=1) with
three points removed.



Chapter 6

Riemannian Geometry

6.1 Riemannian Manifolds

In the definition of manifolds introduced in section 4.1, it was implicitly as-
sumed manifolds were embedded (or immersed) in Rn. As such, they inherited
a natural metric induced by the standard Euclidean metric of Rn, as shown in
section 4.2. For general manifolds it is more natural to start with a topological
space M , and define the coordinate patches as pairs {Ui, φi}, where {Ui} is an
open cover of M with local homeomorphisms

φi : Ui ⊂M → Rn.

If p ∈ Ui ∩Uj is a point in the non-empty intersection of two charts, we require
that the overlap map φij = φiφ

−1
j : Rn → Rn be a diffeomorphism. The local

coordinates on patch {U, φ} are given by (x1, . . . , xn), where

xi = ui ◦ φ,

and ui : Rn → R are the projection maps on each slot. The concept is the same
as in figure 4.2, but, as stated, we are not assuming a priori that M is embedded
(or immersed) in Euclidean space. If in addition the space is equipped with a
metric, the space is called a Riemannian manifold. If the signature of the metric
is of type g = diag(1, 1, . . . ,−1,−1), with p ‘+’ entries and q ‘-’ entries, we say
that M is a pseudo-Riemannian manifold of type (p, q). As we have done with
Minkowski’s space, we switch to Greek indices xµ for local coordinates of curved
space-times. We write the Riemannian metric as

ds2 = gµν dx
µdxν . (6.1)

We will continue to be consistent with earlier notation and denote the tangent
space at a point p ∈ M as TpM , the tangent bundle as TM , and the space of
vector fields as X (M). Similarly, we denote the space of differential k-forms
by Ωk(M), and the set of type

(
r
s

)
tensor fields by T r

s (M).

185
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Fig. 6.1: Coordinate Charts

Product Manifolds

Suppose that M1 and M2 are differentiable manifolds of dimensions m1 and
m2 respectively. Then, M1 ×M2 can be given a natural manifold structure of
dimension n = m1 +m2 induced by the product of coordinate charts. That is,
if (φi

1
, Ui

1
) is a chart in M1 in a neighborhood of p

1
∈ M1, and (φi

2
, Ui

2
) is a

chart in a neighborhood of p
2
∈M2 in M2, then the map

φi
1
× φi

2
: Ui

1
× Ui

2
→ Rn

defined by
(φi1× φi2 )(p

1
, p

2
) = (φi1(p1

), φi2(p2
)),

is a coordinate chart in the product manifold. An atlas constructed from such
charts, gives the differentiable structure. Clearly, M1×M2 is locally diffeomor-
phic to Rm1× Rm2 . To discuss the tangent space of a product manifold, we
recall from linear algebra, that given two vector spaces V and W , the direct
sum V ⊕W is the vector space consisting of the set of ordered pairs

V ⊕W = {(v, w) : v ∈ V, w ∈W},

together with the vector operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), for all, v1, v2 ∈ V ; w1, w2 ∈W,
k(v, w) = (kv, kw), for all k ∈ R

People often say that one cannot add apples and peaches, but this is not a
problem for mathematicians. For example, 3 apples and 2 peaches plus 4 apples
and 6 peaches is 7 apples and 8 peaches. This is the basic idea behind the direct
sum. We now have the following theorem:

6.1.1 Theorem Let (p1 , p2) ∈ M1 ×M2), then there is a vector space iso-
morphism

T(p
1
,p

2
)(M1 ×M2) ∼= Tp

1
M1 ⊕ Tp

2
M2.
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Proof The proof is adapted from [18]. Given X1 ∈ Tp
1
M1 and X2 ∈ Tp

2
M2,

let

x1(t) be a curve with x1(0) = p
1

and x′1(0) = X1,

x2(t) be a curve with x2(0) = p
2

and x′2(0) = X2.

Then, we can associate

(X1, X2) ∈ Tp
1
M1 ⊕ Tp

2
M2

with the vector X ∈ T(p
1
,p

2
)(M1 ×M2), which is tangent to the curve x(t) =

(x1(t), x2(t)), at the point (p1 , p2). In the simplest possible case where the
product manifold is R2 = R1 ×R1, the vector X would be the velocity vector
X = x′(t) of the curve x(t). It is convenient to introduce the inclusion maps

ip
2
: M1

↘
(M1 ×M2)

,↗
ip1 : M2

defined by,

ip
2
(p) = (p, p

2
), for p ∈M1,

ip
1
(q) = (p1 , q), for q ∈M2

The image of the vectors X1 and X2 under the push-forward of the inclusion
maps

ip
2
∗ : Tp

1
M1

↘
T(p1 ,p2)(M1 ×M2)

↗
ip1∗ : Tp2M2,

yield vectors X1 and X2, given by,

ip
2
∗(X1) = X1 = (x′1(t), p

2
),

ip1∗(X2) = X1 = (p
1
, x′2(t)).

Then, it is easy to show that,

X = ip
2
∗(X1) + ip

1
∗(X2).

Indeed, if f is a smooth function f : M1 ×M2 → R, we have,

X(f) =
d

dt
(f(x1(t), x2(t))|

t=0
,

=
d

dt
(f(x1(t), x2(0))|

t=0
+
d

dt
(f(x1(0), x2(t))|

t=0
,

= X1(f) +X2(f).
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More generally, if
ϕ : M1 ×M2 → N

is a smooth manifold mapping, then we have a type of product rule formula for
the Jacobian map,

ϕ∗X = ϕ∗(ip
2
∗(X1)) + ϕ∗(ip

1
∗(X2)),

= (ϕ ◦ ip2 )∗X1 + (ϕ ◦ ip1 )∗X2 (6.2)

This formula will be useful in the treatment of principal fiber bundles, in which
case we have a bundle space E, and a Lie group G acting on the right by a
product manifold map µ : E ×G→ E.

6.2 Submanifolds

A Riemannian submanifold is a subset of a Riemannian manifold that is
also Riemannian. The most natural example is a hypersurface in Rn. If
(x1, x2 . . . xn) are local coordinates in Rn with the standard metric, and the
surface M is defined locally by functions xi = xi(uα), then M together with
the induced first fundamental form 4.12, has a canonical Riemannian structure.
We will continue to use the notation ∇ for a connection in the ambient space
and ∇ for the connection on the surface induced by the tangential component
of the covariant derivative

∇XY = ∇XY +H(X,Y ), (6.3)

where H(X,Y ) is the component in the normal space. In the case of a hyper-
surface, we have the classical Gauss equation 4.74

∇XY = ∇XY + II(X,Y )N (6.4)

= ∇XY+ < LX,Y > N, (6.5)

where LX = −∇XN is the Weingarten map. If M is a submanifold of codi-
mension n − k, then there are k normal vectors Nk and k classical second
fundamental forms IIk(X,Y ), so that H(X,Y ) =

∑
k IIk(X,Y )Nk.

As shown by the theorema egregium, the curvature of a surface in R3 depends
only on the first fundamental form, so the definition of Gaussian curvature as
the determinant of the second fundamental form does not even make sense in-
trinsically. One could redefine K by Cartan’s second structure equation as it
was used to compute curvatures in Chapter 4, but what we need is a more gen-
eral definition of curvature that is applicable to any Riemannian manifold. The
concept leading to the equations of the theorema egregium involved calculation
of the difference of second derivatives of tangent vectors. At the risk of being
somewhat misleading, figure 4.95 illustrates the concept. In this figure, the vec-
tor field X consists of unit vectors tangent to parallels on the sphere, and the
vector field Y are unit tangents to meridians. If an arbitrary tangent vector Z
is parallel-transported from one point on an spherical triangle to the diagonally
opposed point, the result depends on the path taken. Parallel transport of Z



6.2. SUBMANIFOLDS 189

Fig. 6.2: R(X,Y)Z

along X followed by Y , would yield a different outcome that parallel transport
along Y followed by parallel transport along X. The failure of the covariant
derivatives to commute is a reflection of the existence of curvature. Clearly, the
analogous parallel transport by two different paths on a rectangle in Rn yield
the same result. This fact is the reason why in elementary calculus, vectors are
defined as quantities that depend only on direction and length. As indicated,
the picture is misleading, because, covariant derivatives, as is the case with
any other type of derivative, involve comparing the change of a vector under
infinitesimal parallel transport. The failure of a vector to return to itself when
parallel-transported along a closed path is measured by an entity related to the
curvature called the holonomy of the connection. Still, the figure should help
motivate the definition that follows.

6.2.1 Definition On a Riemannian manifold with connection ∇, the curva-
ture R and the torsion T are defined by:

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ], (6.6)

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (6.7)

6.2.2 Theorem The Curvature R is a tensor. At each point p ∈M , R(X,Y )
assigns to each pair of tangent vectors, a linear transformation from TpM into
itself.
Proof Let X,Y, Z ∈X (M) be vector fields on M . We need to establish that
R is muiltilinear. Since clearly R(X,Y ) = −R(Y,X), we only need to establish
linearity on two slots. Let f be a C∞ function. Then,

R(fX, Y ) = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z,

= f∇X∇Y Z −∇Y (f∇X)Z −∇[fXY−Y (fX)]Z,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ −∇fXY Z +∇(Y (f)X+fY X)Z,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ − f∇XY Z +∇Y (f)XZ +∇fY XZ,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ − f∇XY Z + Y (f)∇XZ + f∇YXZ,
= f∇X∇Y Z − f∇Y∇XZ − f(∇XY Z −∇YX)Z,

= fR(X,Y )Z.
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Similarly, recalling that [X,Y ] ∈X , we get:

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ),

= ∇X(Y (f)Z) + f∇Y Z)−∇Y (X(f)Z + f∇XZ)− [X,Y ](f)Z)− f∇[X,Y ]Z,

= XY (f)Z) + Y (f)∇XZ +X(f)∇Y Z + f∇X∇Y Z−
Y X(f)Z)−X(f)∇Y Z − Y (f)∇XZ − f∇Y∇XZ−

[X,Y ](f)Z)− f∇[X,Y ](Z),

= fR(X,Y )Z.

We leave it as an almost trivial exercise to check linearity over addition in all
slots.

6.2.3 Theorem The torsion T is also a tensor.
Proof Since T (X,Y ) = −T (Y,X), it suffices to prove linearity on one slot.
Thus,

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ],

= f∇XY − Y (f)X − f∇YX − fXY + Y (fX),

= f∇XY − Y (f)X − f∇YX − fXY + Y (f)X + fY X,

= f∇XY − f∇Y X − f [X,Y ],

= fT (X,Y ).

Again, linearity over sums is clear.

6.2.4 Theorem In a Riemannian manifold there exist a unique torsion free
connection called the Levi-Civita connection, that is compatible with the metric.
That is:

[X,Y ] = ∇XY −∇YX, (6.8)

∇X < Y,Z >= < ∇XY,Z > + < Y,∇XZ > . (6.9)

Proof The proof parallels the computation leading to equation 4.76.Let ∇ be
a connection compatible with the metric. By taking the three cyclic derivatives
of the inner product, and subtracting the third from the sum of the first two

(a) ∇X < Y,Z >= < ∇XY, Z > + < Y,∇XZ >,

(b) ∇Y < X,Z >= < ∇YX,Z > + < X,∇Y Z >,

(c) ∇Z < X,Y >= < ∇ZX,Y > + < X,∇ZY >,

(a) + (b)− (c) = < ∇XY, Z > + < ∇YX,Z > + < [X,Z], Y > + < [Y, Z], X >

=2 < ∇XY, Z > + < [Y,X], Z > + < [X,Z], Y > + < [Y, Z], X >

Therefore:

< ∇XY,Z >= 1
2
{∇X < Y,Z > +∇Y < X,Z > −∇Z < X,Y >

+ < [X,Y ], Z > + < [Z,X], Y > + < [Z, Y ], X >}. (6.10)

The bracket of any two vector fields is a vector field, so the connection is unique
since it is completely determined by the metric. In disguise, this is the formula
in local coordinates for the Christoffel symbols 4.76. This follows immediately
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by choosing X = ∂/∂xα, Y = ∂/∂xβ and Z = ∂/∂xγ . Conversely, if one
defines ∇XY by equation 6.10, a long but straightforward computation with
lots of cancellations, shows that this defines a connection compatible with the
metric.

As before, if {eα} is a frame with dual frame {θa}, we define the connection
forms ω, Christoffel symbols Γ and torsion components in the frame by

∇Xeβ = ωγβ(X) eγ , (6.11)

∇eαeβ = Γγαβ eγ , (6.12)

T (eα, eβ) = T γαβ eγ . (6.13)

As was pointed out in the previous chapter, if the frame is an orthonormal
frame such as the coordinate frame {∂/∂xµ} for which the bracket is zero, then
T = 0 implies that the Christoffel symbols are symmetric in the lower indices.

T γαβ = Γγαβ − Γγβα = 0.

For such a coordinate frame, we can compute the components of the Riemann
tensors as follows:

R(eγ , eβ) eδ = ∇eγ∇eβeδ −∇eβ∇eγeδ,
= ∇eγ (Γαβδeα)−∇eβ (Γαγδeα),

= Γαβδ,γeα + ΓαβδΓ
µ
γαeµ − Γαγδ,βeα − ΓαγδΓ

µ
βαeµ,

= [Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ]eα,

= Rαβγδ eα,

where the components of the Riemann Tensor are defined by:

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ. (6.14)

Let X = Xµeµ be and α = Xµθ
µ be a covariant and a contravariant vector

field respectively. Using the notation ∇α = ∇eα it is almost trivial to compute
the covariant derivatives. The results are,

∇βX = (Xµ
,β +XνΓµβν)eµ,

∇βα = (Xµ,β −XνΓνβµ)θµ, (6.15)

We show the details of the first computation, and leave the second one as an
easy exercise

∇βX = ∇β(Xµeµ), (6.16)

= Xµ
,βeµ +XµΓδβµeδ, (6.17)

= (Xµ
,β +XνΓµβν)eµ. (6.18)
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In classical notation, the covariant derivatives Xµ
‖β and Xµ‖β are given in

terms of the tensor components,

Xµ
‖β = Xµ

,β +XνΓµβν ,

Xµ‖β = Xµ,β −XνΓνβµ. (6.19)

It is also straightforward to establish the Ricci identities

Xµ
‖αβ −Xµ

‖βα = XνRµναβ ,

Xµ‖αβ −Xµ‖βα = −XνR
ν
µαβ . (6.20)

Again, we show the computation for the first identity and leave the second as
a exercise. We take the second derivative. and then reverse the order,

∇α∇βX = ∇α(Xµ
,βeµ +XνΓµβνeµ),

= Xµ
,βαeµ +Xµ

,βΓδαµeδ +Xν,αΓµβµeν +XνΓµβν,αeµ +XνΓµβνΓδανeδ,

∇α∇βX = (Xµ
,βα +Xν

,βΓµαν +Xν
,αΓνβν +XνΓµβν,α +XνΓδβνΓµαδ)eµ,

∇β∇αX = (Xµ
,αβ +Xν

,αΓµβν +Xν
,βΓναν +XνΓµαν,β +XνΓδανΓµβδ)eµ.

Subtracting the last two equations, only the last two terms of each survive, and
we get the desired result,

2∇[α∇β](X) = Xν(Γµβν,α − Γµαν,β + ΓδβνΓµαδ − ΓδανΓµβδ)eµ,

2∇[α∇β](X
µeµ) = (XνRµναβ)eµ.

In the lietrature, many authors use the notation ∇βXµ to denote the covariant
derivative Xµ

‖β , but it is really an (excusable) abuse of notation that arises
from thinking of tensors as the components of the tensors. The Ricci identities
are the basis for the notion of holonomy, namely, the simple interpretation that
the failure of parallel transport to commute along the edges of an rectangle,
indicates the presence of curvature. With more effort with repeated use of
Leibnitz rule, one can establish more elaborate Ricci identities for higher order
tensors. If one assumes zero torsion, the Ricci identities of higher order tensors
just involve more terms with the curvature. It the torsion is not zero, there are
additional terms involving the torsion tensor; in this case it is perhaps a bit
more elegant to use the covariant differential introduced in the next section, so
we will postpone the computation until then.

The generalization of the theorema egregium to manifolds comes from the
same principle of splitting the curvature tensor of the ambient space into the
tangential on normal components. In the case of a hypersurface with normal
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N and tangent vectors X,Y, Z, we have:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

= ∇X(∇Y Z+ < LY,Z > N)−∇Y (∇XZ+ < LX,Z > N)−∇[X,Y ]Z,

=∇X∇Y Z+ < LX,∇Y Z > N +X < LY,Z > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N − Y < LX,Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

=∇X∇Y Z+ < LX,∇Y Z > N +X < LY,Z > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N − Y < LX,Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

= ∇X∇Y Z+ < LX,∇Y Z > N+ < ∇XLY,Z > N+ < LY,∇XZ > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N− < ∇Y LX,Z > N− < LX,∇Y Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

= R(X,Y )Z+ < LY,Z > LX− < LX,Z > LY+

{< ∇XLY,Z > − < ∇Y LX,Z > − < L([X,Y ]), Z >}N.

If the ambient space is Rn, the curvature tensor R is zero, so we can set the
horizontal and normal components in the right to zero. Noting that the normal
component is zero for all Z, we get:

R(X,Y )Z+ < LY,Z > LX− < LX,Z > LY = 0, (6.21)

∇XLY −∇Y LX − L([X,Y ]) = 0. (6.22)

In particular, if n = 3, and at each point in the surface, the vectors X and Y
constitute an a basis of the tangent space, we get the coordinate-free theorema
egregium

K =< R(X,Y )X,Y >=< LX,X >< LY, Y > − < LY,X >< LX, Y >= det(L).
(6.23)

The expression 6.22 is the coordinate-independent version of the equation of
Codazzi.

We expect the covariant definition of the torsion and curvature tensors to be
consistent with the formalism of Cartan.

6.2.5 Theorem Equations of Structure.

Θα = dθα + ωαβ ∧ θβ , (6.24)

Ωαβ = dωαβ + ωαγ ∧ ω
γ
β . (6.25)

To verify this is the case, we define:

T (X,Y ) = Θα(X,Y )eα, (6.26)

R(X,Y )eβ = Ωαβ(X,Y )eα. (6.27)

Recalling that any tangent vector X can be expressed in terms of the basis as
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X = θα(X) eα, we can carry out a straight-forward computation:

Θα(X,Y ) eα = T (X,Y ) = ∇XY −∇YX − [X,Y ],

= ∇X(θα(Y )) eα −∇Y (θα(X)) eα − θα([X,Y ]) eα,

= X(θα(Y )) eα + θα(Y ) ωβα(X) eβ − Y (θα(X)) eα

− θα(X) ωβα(Y ) eβ − θα([X,Y ]) eα,

= {X(θα(Y ))− Y (θα(X))− θα([X,Y ]) + ωαβ(X)(θβ(Y )− ωαβ(Y )(θβ(X)}eα,

= {(dθα + ωαβ ∧ θβ)(X,Y )}eα,

where we have introduced a coordinate-free definition of the differential of the
one form θ by

dθ(X,Y ) = X(θ(Y ))− y(θ(X))− θ([X,Y ]). (6.28)

It is easy to verify that this definition of the differential of a one form satisfies
all the required properties of the exterior derivative, and that it is consistent
with the coordinate version of the differential introduced in Chapter 2. We
conclude that

Θα = dθα + ωαβ ∧ θβ , (6.29)

which is indeed the first Cartan equation of structure. Proceeding along the
same lines, we compute:

Ωαβ(X,Y ) eα = ∇X∇Y eβ −∇Y∇X eβ −∇[X,Y ] eβ ,

= ∇X(ωαβ(Y ) eα)−∇Y (ωαβ(X) eα)− ωαβ([X,Y ]) eα,

= X(ωαβ(Y )) eα + ωαβ(Y ) ωγα(X) eγ − Y (ωαβ(X)) eα

− ωαβ(X) ωγα(Y ) eγ − ωαβ([X,Y ]) eα

= {(dωαβ + ωαγ ∧ ωγβ)(X,Y )}eα,

thus arriving at the second equation of structure

Ωαβ = dωαβ + ωαγ ∧ ω
γ
β . (6.30)

The quantities connection and curvature forms are matrix-valued. Using matrix
multiplication notation, we can abbreviate the equations of structure as

Θ = dθ + ω ∧ θ,
Ω = dω + ω ∧ ω. (6.31)

Taking the exterior derivative of the structure equations gives some interesting
results. Here is the first computation,

dΘ = dω ∧ θ − ω ∧ dθ,
= dω ∧ θ − ω ∧ (Θ− ω ∧ θ),
= dω ∧ θ − ω ∧Θ + ω ∧ ωθ,
= (dω + ω ∧ ω) ∧ θ − ω ∧Θ,

= Ω ∧ θ − ω ∧Θ,
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so,
dΘ + ω ∧Θ = Ω ∧ θ. (6.32)

Similarly, taking d of the second structure equation we get,

dΩ = dω ∧ ω + ω ∧ dω,
= (Ω− ω ∧ ω) ∧ ω + ω ∧ (Ω− ω ∧ ω).

Hence,
dΩ = Ω ∧ ω − ω ∧ Ω. (6.33)

Equations 6.32 and 6.33 are called the first and second Bianchi identities. The
relationship between the torsion and Riemann tensor components with the cor-
responding differential forms are given by

Θα = 1
2T

α
γδ θ

γ ∧ θδ,
Ωαβ = 1

2R
α
βγδ θ

γ ∧ θδ. (6.34)

In the case of a non-coordinate frame in which the Lie bracket of frame vectors
does not vanish, we first write them as linear combinations of the frame

[eβ , eγ ] = Cαβγ eα. (6.35)

The components of the torsion and Riemann tensors are then given by

Tαβγ = Γαβγ − Γαγβ − Cαβγ ,
Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

α
γµ − ΓµβγΓαδµ − ΓαβµC

µ
γδ − ΓασβC

σ
γδ. (6.36)

The Riemann tensor for a torsion-free connection has the following symmetries;

R(X,Y ) = −R(Y,X),

< R(X,Y )Z,W > = − < R(X,Y )W,Z >,

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0. (6.37)

In terms of components, the Riemann Tensor symmetries can be expressed as

Rαβγδ = −Rαβδγ = −Rβαγδ,
Rαβγδ = Rγδαβ ,

Rαβγδ +Rαγδβ +Rαδβγ = 0. (6.38)

The last cyclic equation is the tensor version of the first Bianchi Identity with
0 torsion. It follows immediately from setting Ω ∧ θ = 0 and taking a cyclic
permutation of the antisymmetric indices {β, γ, δ} of the Riemann tensor. The
symmetries reduce the number of independent components in an n-dimensional
manifold from n4 to n2(n2 − 1)/12. Thus, for a 4-dimensional space, there are
at most 20 independent components. The derivation of the tensor version of
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the second Bianchi identity from the elegant differential forms version, takes a
bit more effort. In components the formula

dΩ = Ω ∧ ω − ω ∧ Ω

reads,

Rαβκλ;µ θ
µ ∧ θκ ∧ θλ = (ΓρµβR

α
ρκλ − ΓαµρR

ρ
βκλ)θµ ∧ θκ ∧ θλ,

where we used the notation,

∇µRαβκλ = Rαβκλ;µ.

Taking a cyclic permutation on the antisymmetric indices κ, λ, µ, and using
some index gymnastics to show that the right hand becomes zero, the tensor
version of the second Bianchi identity for zero torsion becomes

Rαβ[κλ;µ] = 0 (6.39)

6.3 Sectional Curvature

Let {M, g} be a Riemannian manifold with Levi-Civita connection ∇ and
curvature tensor R(X,Y ). In local coordinates at a point p ∈M we can express
the components

R = Rµνρσ dx
µdxνdxρdxσ

of a covariant tensor of rank 4. With this in mind, we define a multilinear
function

R : Tp(M)⊗ Tp(M)⊗ Tp(M)⊗ Tp(M)→ R,

by

R(W,Y,X,Z) =< W,R(X,Y )Z > (6.40)

In this notation, the symmetries of the tensor take the form,

R(W,X, Y, Z) = −R(W,Y,X,Z),

R(W,X, Y, Z) = −R(Z, Y,X,W )

R(W,X, Y, Z) +R(W,Z,X, Y ) +R(X,Y, Z,X) = 0. (6.41)

From the metric, we can also define a multilinear function

G(W,Y,X,Z) =< Z, Y >< X,W > − < Z,X >< Y,W > .

Now, consider any 2-dimensional plane Vp ⊂ Tp(M) and let X,Y ∈ V be
linearly independent. Then,

G(X,Y,X, Y ) =< X,X >< Y, Y > − < X,Y >2
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is a bilinear form that represents the area of the parallelogram spanned by X
and Y . If we perform a linear, non-singular change of of coordinates,

X ′ = aX + bY, y′ = cX + dY, ad− bc 6= 0,

then both, G(X,Y.X, Y ) and R(X,Y,X, Y ) transform by the square of the
determinant D = ad − bc, so the ratio is independent of the choice of vectors.
We define the sectional curvature of the subspace Vp by

K(Vp) =
R(X,Y,X, Y )

G(X,Y,X, Y )
,

=
R(X,Y,X, Y )

< X,X >< Y, Y > − < X,Y >2
(6.42)

The set of values of the sectional curvatures for all planes at Tp(M) completely
determines the Riemannian curvature at p. For a surface in R3 the sectional
curvature is the Gaussian curvature, and the formula is equivalent to the the-
orema egregium. If K(Vp) is constant for all planes Vp ∈ Tp(M) and for all
points p ∈ M , we say that M is a space of constant curvature. For a space of
constant curvature k, we have

R(X,Y )Z = k(< Z, Y > X− < Z,X > Y ) (6.43)

In local coordinates, the equation gives

Rµνρσ = k(gνσgµρ − gνγgµσ). (6.44)

6.3.1 Example
The model space of manifolds of constant curvature is a quadric hypersurface

M of Rn+1 with metric

ds2 = εk2dt2 + (dy1)2 + · · ·+ dyn)2,

given by the equation

M : εk2t2 + (y1)2 + . . . (yn)2 = εk2, t 6= 0,

where k is a constant and ε = ±1. For the purposes of this example it will
actually be simpler to completely abandon the summation convention. Thus,
we write the quadric as

εk2t2 + Σi(y
i)2 = εk2.

If k = 0, the space is flat. If ε = 1, let (y0)2 = k2t2 and the quadric is isometric
to a sphere of constant curvature 1/k2. If ε = −1, Σi(x

i)2 = −k2(1 − t2) > 0,
then t2 < 1 and the surface is a hyperboloid of two sheets. Consider the
mapping from (R)n+1 to Rn given by

xi = yi/t.
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We would like to compute the induced metric on the the surface. We have

−k2t2 + Σi(y
i)2 = −k2t2 + t2Σi(x

i)2 = −k2

so

t2 =
−k2

−k2 + Σi(xi)2
.

Taking the differential, we get

t dt =
−k2Σi(x

idxi)

−k2 + Σi(xi)2
.

Squaring and dividing by t2 we also have

dt2 =
−k2(Σix

i dxi)2

(−k2 + Σi(xi)2)3
.

From the product rule, we have dyi = xi dt+ t dxi, so the metric is

ds2 = −k2 dt2 + [Σ(xi)2]dt2 + 2t dtΣi(x
i dxi) + t2Σ(dxi)2,

= [−k2 + Σi(x
i)2] dt2 + 2t dtΣi(x

i dxi) + t2Σ(dx1)2,

=
−k2[Σi(x

idxi)]2

[−k2 + Σi(xi)2]2
+

2k2[Σi(x
idxi)]2

[−k2 + Σi(xi)2]2
+
−k2Σi(dx

i)2

−k2 + Σi(dxi)2
,

= k2 [k2 − Σi(x
i)2]Σi(dx

i)2 − (Σi(x
i dxi))2

[k2 − Σi(xi)2]2

It is not obvious, but in fact, the space is also of constant curvature (−1/k2).
For an elegant proof, see [18]. When n = 4 and ε = −1, the group leaving the
metric

ds2 = −k2dt2 + (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2

invariant, is the Lorentz group O(1, 4). With a minor modification of the above,
consider the quadric

M : −k2t2 + (y1)2 + . . . (y4)2 = k2.

In this case, the quadric is a hyperboloid of one sheet, and the submanifold
with the induced metric is called the de Sitter space. The isotropy subgroup
that leaves (1, 0, 0, 0, 0) fixed is O(1, 3) and the manifold is diffeomorphic to
O(1, 4)/O(1, 3). Many alternative forms of the de Sitter metric exist in the
literature. One that is particularly appealing is obtained as follows. Write the
metric in ambient space as

ds2 = −(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2

with the quadric given by

M : −(y0)2 + (y1)2 + . . . (y4)2 = k2.
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Let
4∑
i=1

(xi)2 = 1

so M represents a unit sphere S3. Introduce the coordinates for M

y0 = k sinh(τ/k),

yi = k cosh(τ/k).

Then, we have

dy0 = cosh(τ/k) dτ,

dyi = sinh(τ/k)xi dτ + k cosh(τ/k) dxi.

The induced metric on M becomes,

ds2 = −[cosh2(τ/k)− sinh2(τ/k)Σi(x
i)2] dτ + cosh2(τ/k)Σi(dx

i)2,

= −dτ2 + cosh2(τ/k)dΩ2,

where dΩ is the volume form for S3. The most natural coordinates for the
volume form are the Euler angles and Cayley-Klein parameters. The interpre-
tation of this space-time is that we have a spatial 3-sphere which propagates
in time by shrinking to a minimum radius at the throat of the hyperboloid,
followed by an expansion. Being a space of constant curvature, the Ricci tensor
is proportional to the metric, so this is an Einstein manifold.

6.4 Big D

In this section we discuss the notion of a connection on a vector bundle E.
Let M be a smooth manifold and as usual we denote by T rs (p) the vector space
of type

(
r
s

)
tensors at a point p ∈ M . The formalism applies to any vector

bundle, but in this section we are primarily concerned with the case where E
is the tensor bundle E = T rs (M). Sections Γ(E) = T r

s (M) of this bundle
are called tensor fields on M . For general vector bundles, we use the notation
s ∈ Γ(E) for the sections of the bundle. The section that maps every point of M
to the zero vector, is called the zero section. Let {eα} be an orthonormal frame
with dual forms {θα}. We define the space Ωp(M,E) tensor-valued p-form as
sections of the bundle,

Ωp(M,E) = Γ(E ⊗ Λp(M)). (6.45)

As in equation 2.63, a tensor-valued p form is a tensor of type
(
r
s+p

)
with

components,

T = Tα1,...αr
β1,...βs,γ1,...,γp

eα1
⊗ . . . eαr ⊗ θβ1 ⊗ · · · ⊗ θβs ∧ θγ1 ∧ . . . ∧ θγp . (6.46)
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A tensor-valued 0-form is just a regular tensor field T ∈ T r
s (M) The main

examples of tensor-valued forms are the torsion and the curvature forms

Θ = Θα ⊗ eα,
Ω = Ωαβ ⊗ eα ⊗ θβ . (6.47)

The tensorial components of the torsion tensor, would then be written as

T = Tαβγeα ⊗ θβ ⊗ θγ ,

=
1

2
Tαβγeα ⊗ θβ ∧ θγ ,

= eα ⊗ ( 1
2T

α
βγθ

β ∧ θγ).

since the tensor is antisymmetric in the lower indices. Similarly, the tensorial
components of the curvature are

Ω =
1

2
Rαβγδ eα ⊗ θβ ⊗ θγ ∧ θδ,

= eα ⊗ θβ ⊗ ( 1
2R

α
βγδθ

γ ∧ θδ).

The connection forms
ω = ωαβ ⊗ eα ⊗ θβ (6.48)

are matrix-valued, but they are not tensorial forms. If T is a type
(
r
s

)
tensor

field, and α a p-form, we can write a tensor-valued p-form as T ⊗α ∈ Ωp(M,E)
is. We seek an operator that behaves like a covariant derivative ∇ for tensors
and exterior derivative d for forms.

6.4.1 Linear Connections

Given a vector field X and a smooth function f , we define a linear connection
as a map

∇X : Γ(T rs )→ Γ(T rs )

with the following properties
1) ∇X(f) = X(f),
1) ∇fXT = fDXT ,
2) ∇X+Y T = ∇XT +∇Y T , for all X,Y ∈X (M),
3) ∇X(T1 + T2) = ∇XT1 +∇XT2, for T1, T2 ∈ Γ(T rs ),
4) ∇X(fT ) = X(f)T + f∇XT .

If instead of the tensor bundle we have a general vector bundle E, we replace the
tensor fields in the definition above by sections s ∈ Γ(E) of the vector bundle.
The definition induces a derivation on the entire tensor algebra satisfying the
additional conditions,

5) ∇X(T1 ⊗ T2) = ∇XT1 ⊗ T2 + T1 ⊗∇XT2,
6) ∇X ◦ C = C ◦ ∇X , for any contraction C.

The properties are the same as a Koszul connection, or covariant derivative for
tensor-valued 0 forms T . Given an orthonormal frame, consider the identity
tensor,

I = δαβ eα ⊗ θβ , (6.49)
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and take the covariant derivative ∇X . We get

∇Xeα ⊗ θα + eα ⊗∇Xθα = 0,

eα ⊗∇Xθα = −∇Xeα ⊗ θα,
= −eβ ωβα(X)⊗ θα,

eβ ⊗∇Xθβ = −eβ ωβα(X)⊗ θα,

which implies that,
∇Xθβ = −ωβα(X)θα. (6.50)

Thus as before, since we have formulas for the covariant derivative of basis vec-
tors and forms, we are led by induction to a general formula for the covariant
derivative of an

(
r
s

)
-tensor given mutatis mutandis by the formula 3.32. In other

words, the covariant derivative of a tensor acquires a term with a multiplica-
tive connection factor for each contravariant index and a negative term with a
multiplicative connection factor for each covariant index.

6.4.1 Definition A connection ∇ on the vector bundle E is a map

∇ : Γ(M.E)→ Γ(M,E ⊗ T ∗(M))

which satisfies the following conditions
a) ∇(T1 + T2) = ∇T1 +∇T2, T1, T2 ∈ Γ(E)),
b) ∇(fT ) = df ⊗ T + f∇T ,
c) ∇XT = iX∇T .

As a reminder of the definition of the inner product iX , condition (c) is equiv-
alent to the equation,

∇T (θ1, . . . , θr, X,X1, . . . , Xs) = (∇XT )(θ1, . . . , θr, X1, . . . , Xs).

In particular, if X is vector field, then, as expected

∇X(Y ) = ∇XY,

The operator ∇ is called the covariant differential. Again, for a general vector
bundles, we denote the sections by s ∈ Γ(E) and the covariant differential by
∇s.

6.4.2 Affine Connections

A connection on the tangent bundle T (M) is called an affine connection. In
a local frame field e, we may assume that the connection is represented by a
matrix of one-forms ω

∇eβ = eα ⊗ ωαβ ,
∇e = e⊗ ω. (6.51)

The tensor multiplication symbol is often omitted when it is clear in context.
Thus, for example, the connection equation is sometimes written as ∇e = eω.
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In a local coordinate system {x1, . . . , x
n}, with basis vectors ∂µ = ∂

∂xµ and dual
forms dxµ, we have,

ωαβµ = Γαβµ dx
µ.

From equation 6.50, it follows that

∇θα = −ωαβ ⊗ θβ . (6.52)

We need to be a bit careful with the dual forms θα. We can view them as a
vector-valued 1-form

θ = eθ ⊗ θα,

which has the same components as the identity
(

1
1

)
tensor. This is a kind of a

odd creature. About the closest analog to this entity in classical terms is the
differential of arc-length

dx = i dx+ j dy + k dz,

which is sort of a mixture of a vector and a form. The vector of differential
forms would then be written as a column vector.
In a frame {eα}, the covariant differential of tensor-valued 0-form T is given by

∇T = ∇eαT ⊗ θα ≡ ∇αT ⊗ θα.

In particular, if X = vαeα, we get,

∇X = ∇βX ⊗ θβ = ∇β(vαeα)⊗ θβ ,
= (∇β(vα) eα + vαΓγβα eγ)⊗ θβ ,

= (vα,β + vγΓαβγ)eα ⊗ θβ

= vα‖β eα ⊗ θ
β ,

where we have used the classical symbols

vα‖β = vα,β + Γαβγ v
γ , (6.53)

for the covariant derivative components vα‖β and the comma to abbreviate the

directional derivative ∇β(vα). Of course, the formula is in agreement with
equation 3.25. ∇X is a

(
1
1

)
-tensor.

Similarly, for a covariant vector field α = vαθ
α, we have

∇α = ∇(vα ⊗ θα)

= ∇vα ⊗ θα − vβ ωβα ⊗ θα,
= (∇γvα θγ − vβΓβαγθ

γ)⊗ θα,
= (vα,γ − Γαβγ vα) θγ ⊗ θα,

hence,

vα‖β = vα,γ − Γαβγ vα. (6.54)
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As promised earlier, we now prove the Ricci identities for contravariant and
covariant vectors when the torsion is not zero. Ricci Identities with torsion.
The results are,

Xµ
‖αβ −Xµ

‖βα = XνRµναβ −Xµ
,νT

ν
αβ ,

Xµ‖αβ −Xµ‖βα = −XνR
ν
µαβ −Xµ,νT

ν
αβ , (6.55)

We prove the first one. Let X = Xµeµ. We have

∇X = ∇βX ⊗ θβ ,
∇2X = ∇(∇βX ⊗ θβ),

= ∇(∇βX)⊗ θβ +∇βX ⊗∇θβ ,
= ∇α∇βX ⊗ θβ ⊗ θα −∇β ⊗ ωβα ⊗ θα,
= ∇α∇βX ⊗ θβ ⊗ θα −∇µX ⊗ Γµαβθ

β ⊗ θα,

∇2X = (∇α∇βX −∇µX Γµαβ) θβ ⊗ θα.

On the other hand, we also have ∇X = ∇αX ⊗ θα, so we can compute ∇2 by
differentiating in the reverse order to get the equivalent expression,

∇2X = (∇β∇αX −∇µX Γµβα) θα ⊗ θβ .

Subtracting the last two equations we get an alternating tensor, or a two-form
that we can set equal to zero. For lack of a better notation we call this form
[∇,∇]. The notations Alt(∇2) and ∇∧∇ also appear in the literature. We get

[∇,∇] = [∇α∇β −∇β∇α)X −∇µX(Γµαβ − Γµβα)]θβ ∧ θα,

= [∇α∇β −∇β∇α −∇[eα,β])X +∇[eα,β]X −∇µX(Γµαβ − Γµβα)]θβ ∧ θα,

= [R(eα, eβ)X + Cµαβ∇µX −∇µX(Γµαβ − Γµβα]θβ ∧ θα,

= [R(eα, eβ)X + Cµαβ −∇µX(Γµαβ − Γµβα − C
µ
αβ ]θβ ∧ θα,

= 1
2 (XνRµναβ −∇µX Tµαβ)θβ ∧ θα.

6.4.3 Exterior Covariant Derivative

Since we know how to take the covariant differential of the basis vectors,
covectors, and tensor products thereof, an affine connection on the tangent
bundle induces a covariant differential on the tensor bundle. It is easy to get a
formula by induction for the covariant differential of a tensor-valued 0-form. A
given connection can be extended in a unique way to to tensor-valued p-forms.
Just as with the wedge product of a 0-form f with a p-form α for which identify
fα with f⊗α = f ∧α, we write a tensor-valued p form as T ⊗α = T ∧α, where
T is a type

(
r
s

)
tensor. We define the exterior covariant derivative

D : Ωp(M,E)→ Ωp+1(M,E)
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by requiring that,

D(T ⊗ α) = D(T ∧ α),

= ∇T ∧ α+ (−1)pT ∧ dα. (6.56)

it is instructive to show the details of the computation of the exterior covariant
derivative of the vector valued one forms θ and Θ, and the

(
1
1

)
tensor-valued

2-form Ω. The results are

Dθα = dθα + ωαβ ∧ θβ ,
DΘα = dΘα + ωαβ ∧Θβ ,

DΩαβ = dΩαβ + ωαγ ∧ Ωαγ − Ωαγ ∧ ωγβ (6.57)

The first two follow immediately, we compute the third. We start by writing

Ω = Ωαβ eα ⊗ θβ ,
= (eα ⊗ θβ) ∧ Ωαβ .

Then,

DΩ = D(eα ⊗ θβ) ∧ Ωαβ + (−1)2(eα ⊗ θβ) ∧ dΩαβ ,

= (Deα ⊗ θβ + eα ⊗Dθβ) ∧ Ωαβ + (eα ⊗ θβ) ∧ dΩαβ ,

= (eγ ⊗ ωγθ ⊗ θβ + eα ⊗ ωβγ ⊗ θγ)∧)Ωαβ + (eα ⊗ θβ) ∧ dΩαβ ,

= (eα ⊗ θβ) ∧ (dΩαβ + ωαγ ∧ Ωγβ − ωαγ ∧ Ωγβ).

In the last step we had to relabel a couple of indices so that we could factor out
(eα ⊗ θβ). The pattern should be clear. We get an exterior derivative for the
forms, an ω ∧ Ω term for the contravariant index and an Ω ∧ ω term with the
appropriate sign, for the covariant index. Here the computation gives

DΩαβ = dΩαβ + ωαγ ∧ Ωγβ − ωαγ ∧ Ωγβ , or

DΩ = dω + ω ∧ Ω− Ω ∧ ω. (6.58)

This means that we can write the equations of structure as

Θ = Dθ,

Ω = dω + ω ∧ ω, (6.59)

and the Bianchi’s identities as

DΘ = Ω ∧ θ,
DΩ = 0 (6.60)

With apologies for the redundancy, we reproduce the change of basis formula
3.49. Let e′ = eB be an orthogonal change of basis. Then

De′ = e⊗ dB +DeB,

= e⊗ dB + (e⊗ ω)B,

= e′ ⊗ (B−1dB +B−1ωB),

= e′ ⊗ ω′,
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where,

ω′ = B−1dB +B−1ωB. (6.61)

Multiply the last equation by B and take the exterior derivative d. We get.

Bω′ = dB + ωB,

Bdω′ + dB ∧ ω′ = dωB − ω ∧ dB,
Bdω′ + (Bω′ − ωB) ∧ ω′ = dωB − ω ∧ (ω′B − ωB),

B(dω′ + ω′ ∧ ω′) = (dω + ω ∧ ω)B,

Setting Ω = dω + ω ∧ ω, and Ω′ = dω′ + ω′ ∧ ω′, the last equation reads,

Ω′ = B−1ΩB. (6.62)

As pointed out after equation 3.49, the curvature is a tensorial form of adjoint
type. The transformation law above for the connection has an extra term,
so it is not tensorial. It is easy to obtain the classical transformation law
for the Christoffel symbols from equation 6.61. Let {xα} be coordinates in a
patch (φα, Uα), and {yβ} be coordinates on a overlapping patch (φβ , Uβ). The
transition functions φαβ are given by the Jacobian of the change of coordinates,

∂

∂yβ
=
∂xα

∂yβ
∂

∂xα
,

φαβ =
∂xα

∂yβ
.

Inserting the connection components ω′αβ = Γ′αβγdy
γ , into the change of basis

formula 6.61, with B = φαβ , we get1,

ω′αβ = (B−1)ακdB
κ
β + (B−1)ακ ω

κ
λB

λ
β ,

=
∂yα

∂xκ
d

(
∂xκ

∂yβ

)
+
∂yα

∂xκ
ωκλ

∂xλ

∂yβ
,

Γ′αβγdy
γ =

∂yα

∂xκ
∂2xκ

∂yσ∂yβ
dyσ +

∂yα

∂xκ
Γκλσdx

σ ∂x
λ

∂yβ
,

Γ′αβγ =
∂yα

∂xκ
∂2xκ

∂yγ∂yβ
+
∂yα

∂xκ
Γκλσ

∂xσ

∂yγ
∂xλ

∂yβ
.

Thus, we retrieve the classical transformation law for Christoffel symbols that
one finds in texts on general relativity.

Γ′αβγ = Γκλσ
∂yα

∂xκ
∂xσ

∂yγ
∂xλ

∂yβ
+
∂yα

∂xκ
∂2xκ

∂yγ∂yβ
. (6.63)

1We use this notation reluctantly, to be consistent with most literature. The notation
results in violation of the index notation. We really should be writing φαβ , since in this case,
the transition functions are matrix-valued.
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6.4.4 Parallelism

When first introduced to vectors in elementary calculus and physics courses,
vectors are often described as entities characterized by a direction and a length.
This primitive notion, that two such entities in Rn with the same direction and
length represent the same vector, regardless of location, is not erroneous in the
sense that parallel translation of a vector in Rn does not change the attributes
of a vector as described. In elementary linear algebra, vectors are described
as n-tuples in Rn equipped with the operations of addition and multiplication
by scalar, and subject to eight vector space properties. Again, those vectors
can be represented by arrows which can be located anywhere in Rn as long
as they have the same components. This is another indication that parallel
transport of a vector in Rn is trivial, a manifestation of the fact the Rn is a flat
space. However, in a space that is not flat, such as s sphere, parallel transport
of vectors is intimately connected with the curvature of the space. To elucidate
this connection, we first describe parallel transport for a surface in R3.

6.4.2 Definition Let uα(t) be a curve on a surface x = x(uα), and let
V = α′(t) = α∗(

d
dt ) be the velocity vector as defined in 1.25. A vector field Y

is called parallel along α if

∇V Y = 0,

as illustrated in figure 6.2. The notation

DY

dt
= ∇V Y

is also common in the literature. The vector field ∇V V is called the geodesic
vector field, and its magnitude is called the geodesic curvature κg of α. As usual,
we define the speed v of the curve by ‖V ‖ and the unit tangent T = V/‖V ‖, so
that V = vT . We assume v > 0 so that T is defined on the domain of the curve.
The arc length s along the curve is the related to the speed by the equation
v = ds/dt.

6.4.3 Definition A curve α(t) with velocity vector V = α′(t) is called a
geodesic or self-parallel if ∇V V = 0.

6.4.4 Theorem A curve α(t) is geodesic iff
a) v = ‖V ‖ is constant along the curve and,
b) either ∇TT = 0, or κg = 0.

Proof Expanding the definition of the geodesic vector field:

∇V V = ∇vT (vT ),

= v∇T (vT ),

= v
dv

dt
T + v2∇TT,

= 1
2

d

dt
(v2)T + v2∇TT
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We have < T, T >= 1, so < ∇TT, T >= 0 which shows that ∇TT is orthogonal
to T . We also have v > 0. Since both the tangential and the normal components
need to vanish, the theorem follows.

If M is a hypersurface in Rn with unit normal n, we gain more insight
on the geometry of geodesics as a direct consequence of the discussion above.
Without real loss of generality consider the geometry in the case of n = 3.
Since α is geodesic, we have ‖α′‖2 =< α′, α′ >=constant. Differentiation gives
< α′, α′′ >= 0, so that the acceleration α′′ is orthogonal to α′. Comparing
with equation 4.34 we see that T ′ = κnn, which reinforces the fact that the
entire curvature of the curve is due to the normal curvature of the surface as
a submanifold of the ambient space. In this sense, inhabitants constrained to
live on the surface would be unaware of this curvature, and to them, geodesics
would appear locally as the straightest path to travel. Thus, for a sphere in
R3 of radius a, the acceleration α′′ of a geodesic only has a normal component,
and the normal curvature is 1/a. That is, the geodesic must lie along a great
circle.

6.4.5 Theorem Let α(t) by curve with velocity V . For each vector Y in the
tangent space restricted to the curve, there is a unique vector field Y (t) locally
obtained by parallel transport.

Proof We choose local coordinates with frame field {eα = ∂
∂uα }. We write the

components of the vector fields in terms of the frame

Y = yβ
∂

∂uβ
,

V =
duα

dt

∂

∂uα
. then,

∇TV = ∇u̇αeα(yβeβ),

= u̇α∇eα(yβeβ),

=
duα

dt

∂yβ

∂uα
+ u̇αyβΓγαβeγ ,

= [
dyγ

dt
+ yβ

duα

dt
Γγαβ ]eγ.

So, Y is parallel along the curve iff,

dyγ

dt
+ yβ

duα

dt
Γγαβ = 0. (6.64)

The existence and uniqueness of the coefficients yβ that define Y are guaran-
teed by the theorem on existence and uniqueness of differential equations with
appropriate initial conditions.

We derive the equations of geodesics by an almost identical computation.
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∇V V = ∇u̇αeα [u̇βeβ ],

= u̇α∇eα [u̇βeβ ],

= u̇α[
∂u̇β

∂uα
eβ + u̇β∇eαeβ ],

= u̇α
∂u̇β

∂uα
eβ + u̇αu̇β∇eαeβ ,

=
duα

dt

∂u̇β

∂uα
eβ + u̇αu̇βΓσαβeσ,

= üβeβ + u̇αu̇βΓσαβeσ,

= [üσ + u̇αu̇βΓσαβ ]eσ.

Thus, the equation for geodesics becomes

üσ + Γσαβ u̇
αu̇β = 0. (6.65)

The existence and uniqueness theorem for solutions of differential equations
leads to the following theorem

6.4.6 Theorem Let p be a point in M and V a vector TpM . Then, for any
real number t0, there exists a number δ and a curve α(t) defined on [t0−δ, t0+δ],
such that α(t0) = p, α′(t0) = V , and α is a geodesic.

For a general vector bundles E over a manifold M , a section s ∈ Γ(E) of a
vector bundle is called a parallel section if

∇s = 0. (6.66)

We discuss the length minimizing properties geodesics in section 6.6 and provide
a number of examples for surfaces in R3 and for Lorentzian manifolds. Since
geodesic curves have zero acceleration, in Euclidean space they are straight
lines. In Einstein’s theory of relativity, gravitation is a fictitious force caused
by the curvature of space time, so geodesics represent the trajectory of free
particles.

6.5 Lorentzian Manifolds

The formalism above refers to Riemannian manifolds, for which the metric
is positive definite, but it applies just as well to pseudo-Riemannian manifolds.
A 4-dimensional manifold {M, g} is called a Lorentzian manifold if the metric
has signature (+ − −−). Locally, a Lorentzian manifold is diffeomorphic to
Minkowski’s space which is the model space introduced in section 2.2.3. Some
authors use signature (−+ ++).

For the purposes of general relativity, we introduce the symmetric tensor
Ricci tensor Rβδ by the contraction

Rβδ = Rαβαδ, (6.67)
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and the scalar curvature R by

R = Rαβ . (6.68)

The traceless part of the Ricci tensor

Gαβ = Rαβ − 1
2Rgαβ , (6.69)

is called the Einstein tensor. The Einstein field equations (without a cosmo-
logical constant) are

Gαβ =
8πG

c4
Tαβ , (6.70)

where T is the stress energy tensor and G is the gravitational constant. As I
first learned from one of my professors Arthur Fischer, the equation states that
curvature indicates the presence of matter, and matter tells the space how to
curve. Einstein equations with cosmological constant Λ are,

Rαβ − 1
2Rgαβ + Λgαβ =

8πG

c4
Tαβ (6.71)

Fig. 6.3: Gravity

A space time which satisfies

Rαβ = 0 (6.72)

is called Ricci-flat. A space which the Ricci tensor is proportional to the metric,

Rαβ = kgαβ (6.73)

is called an Einstein manifold

6.5.1 Example: Vaidya Metric

This example of a curvature computation in four-dimensional space-time
is due to W. Israel. It appears in his 1978 notes on Differential Forms in
General Relativity, but the author indicates the work arose 10 years earlier
from a seminar at the Dublin Institute for Advanced Studies. The most general,
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spherically symmetric, static solution of the Einstein vacuum equations is the
Schwarzschild metric 2

ds2 =
[
1− 2GM

r

]
dt2 − 1[

1− 2GM
r

] dr2 − r2dθ2 − r2 sin2 θ dφ2 (6.74)

It is convenient to set m = GM and introduce the retarded coordinate trans-
formation

t = u+ r + 2m ln( r
2m − 1),

so that,

dt = du+
1[

1− 2m
r

] dr.
Substitution for dt above gives the metric in outgoing Eddington-Finkelstein
coordinates,

ds2 = 2drdu+ [1− 2m
r ] du2 − r2dθ2 − r2 sin2 θ dφ2. (6.75)

In these coordinates it is evident that the event horizon r = 2m is not a real
singularity. The Vaidya metric is the generalization

ds2 = 2drdu+ [1− 2m(u)
r ] du2 − r2dθ2 − r2 sin2 θ dφ2, (6.76)

where m(u) is now an arbitrary function. The geometry described by the Vaidya
solution to Einstein equations, represents the gravitational field in the exterior
of a radiating, spherically symmetric star. In all our previous curvature compu-
tations by differential forms, the metric has been diagonal; this is an instructive
example of one with a non-diagonal metric. The first step in the curvature com-
putation involves picking out a basis of one-forms. The idea is to pick out the
forms so that in the new basis, the metric has constant coefficients. One possible
choice of 1-forms is

θ0 = du,

θ1 = dr + 1
2 [1− 2m(u)

r ] du,

θ2 = r dθ,

θ3 = r sin θ dφ. (6.77)

In terms of these forms, the line element becomes

ds2 = gαβθ
αθβ = 2θ0θ1 − (θ2)2 − (θ3)2,

where
g01 = g10 = −g22 = −g33 = 1,

while all the other gαβ = 0. In the coframe, the metric has components:

gαβ =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (6.78)

2The Schwarzschild radius is r = 2GM
c2

, but here we follow the common convention of
setting c = 1.
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Since the coefficients of the metric are constant, the components ωαβ of the
connection will be antisymmetric. This means that

ω00 = ω11 = ω22 = ω33 = 0.

We thus conclude that
ω1

0 = g10ω00 = 0,

ω0
1 = g01ω11 = 0,

ω2
2 = g22ω22 = 0,

ω3
3 = g33ω33 = 0.

To compute the connection, we take the exterior derivative of the basis 1-forms.
The result of this computation is

dθ0 = 0,

dθ1 = −d[mr du] =
m

r2
dr ∧ du =

m

r2
θ1 ∧ θ0,

dθ2 = dr ∧ dθ =
1

r
θ1 ∧ θ2 − 1

2r
[1− 2m

r ] θ0 ∧ θ2,

dθ3 = sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ,

=
1

r
θ1 ∧ θ3 − 1

2
[1− 2m

r ] θ0 ∧ θ3 +
1

r
cot θ θ2 ∧ θ3. (6.79)

For convenience, we write below the first equation of structure [6.24] in complete
detail.

dθ0 = ω0
0 ∧ θ0 + ω0

1 ∧ θ1 + ω0
2 ∧ θ2 + ω0

3 ∧ θ3,

dθ1 = ω1
0 ∧ θ0 + ω1

1 ∧ θ1 + ω1
2 ∧ θ2 + ω1

3 ∧ θ3,

dθ2 = ω2
0 ∧ θ0 + ω2

1 ∧ θ1 + ω2
2 ∧ θ2 + ω2

3 ∧ θ3,

dθ3 = ω3
0 ∧ θ0 + ω3

1 ∧ θ1 + ω3
2 ∧ θ2 + ω3

3 ∧ θ3. (6.80)

Since the ω’s are one-forms, they must be linear combinations of the θ’s. Com-
paring Cartan’s first structural equation with the exterior derivatives of the
coframe, we can start with the initial guess for the connection coefficients be-
low:

ω1
0 = 0, ω1

1 =
m

r2
θ0, ω1

2 = A θ2, ω1
3 = B θ3,

ω2
0 = −1

2
[1− 2m

r
] θ2, ω2

1 =
1

r
θ2, ω2

2 = 0, ω2
3 = C θ3,

ω3
0 = −1

2
[1− 2m

r
] θ3, ω3

1 =
1

r
θ3, ω3

2 =
1

r
cot θ θ3, ω3

3 = 0.

Here, the quantities A,B, and C are unknowns to be determined. Observe that
these are not the most general choices for the ω’s. For example, we could have
added a term proportional to θ1 in the expression for ω1

1, without affecting the
validity of the first structure equation for dθ1. The strategy is to interactively
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tweak the expressions until we set of forms completely consistent with Cartan’s
structure equations.

We now take advantage of the skewsymmetry of ωαβ , to determine the other
components. The find A, B and C, we note that

ω1
2 = g10ω02 = −ω20 = ω2

0,

ω1
3 = g10ω03 = −ω30 = ω3

0,

ω2
3 = g22ω23 = ω32 = −ω3

2.

Comparing the structure equations 6.80 with the expressions for the connection
coefficients above, we find that

A = −1

2
[1− 2m

r
], B = −1

2
[1− 2m

r
], C = −1

r
cot θ. (6.81)

Similarly, we have

ω0
0 = −ω1

1,

ω0
2 = ω2

1,

ω0
3 = ω3

1,

hence,

ω0
0 = −m

r2
θ0,

ω0
2 = −1

r
θ2,

ω0
3 =

1

r
θ3.

It is easy to verify that our choices for the ω’s are consistent with first structure
equations, so by uniqueness, these must be the right values.

There is no guesswork in obtaining the curvature forms. All we do is take
the exterior derivative of the connection forms and pick out the components of
the curvature from the second Cartan equations [6.25]. Thus, for example, to
obtain Ω1

1, we proceed as follows.

Ω1
1 = dω1

1 + ω1
1 ∧ ω1

1 + ω1
2 ∧ ω2

1 + ω1
3 ∧ ω3

1,

= d[
m

r2
θ0] + 0− 1

2r2
[1− 2m

r
] ω1

3 ∧ ω3
1 + (θ2 ∧ θ2 + θ3 ∧ θ3),

= −2m

r3
dr ∧ θ0,

= −2m

r3
θ1 ∧ θ0.

The computation of the other components is straightforward and we just present
the results.

Ω1
2 = − 1

r2

dm

du
θ2 ∧ θ0 − m

r3
θ1 ∧ θ2,
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Ω1
3 = − 1

r2

dm

du
θ3 ∧ θ0 − m

r3
θ1 ∧ θ3,

Ω2
1 =

m

r3
θ2 ∧ θ0,

Ω3
1 =

m

r3
θ3 ∧ θ0,

Ω2
3 =

2m

r3
θ2 ∧ θ3.

By antisymmetry, these are the only independent components. We can also
read the components of the full Riemann curvature tensor from the definition

Ωαβ =
1

2
Rαβγδθ

γ ∧ θδ. (6.82)

Thus, for example, we have

Ω1
1 =

1

2
R1

1γδθ
γ ∧ θδ,

hence

R1
101 = −R1

110 =
2m

r3
; other R1

1γδ = 0.

Using the antisymmetry of the curvature forms, we see, that for the Vaidya
metric Ω1

0 = Ω00 = 0, Ω2
0 = −Ω1

2, etc., so that

R00 = R2
020 +R3

030

= R1
220 +R1

330

Substituting the relevant components of the curvature tensor, we find that

R00 = 2
1

r2

dm

du
(6.83)

while all the other components of the Ricci tensor vanish. As stated earlier, if
m is constant, we get the Ricci flat Schwarzschild metric.

6.6 Geodesics

Geodesics were introduced in the section on parallelism. The equation of
geodesics on a manifold given by equation 6.65 involves the Christoffel symbols.
Whereas it is possible to compute all the Christoffel symbols starting with the
metric as in equation 4.76, this is most inefficient, as it is often the case that
many of the Christoffel symbols vanish. Instead, we show next how to obtain
the geodesic equations by using variational principles

δ

∫
L(uα, u̇α, s) ds = 0, (6.84)
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to minimize the arc length. Then we can pick out the non-vanishing Christoffel
symbols from the geodesic equation. Following the standard methods of La-
grangian mechanics, we let uα and u̇α be treated as independent (canonical)
coordinates and choose the Lagrangian in this case to be

L = gαβ u̇
αu̇β . (6.85)

The choice will actually result in minimizing the square of the arc length, but
clearly this is an equivalent problem. It should be observed that the Lagrangian
is basically a multiple of the kinetic energy 1

2mv
2. The motion dynamics are

given by the Euler-Lagrange equations.

d

ds

(
∂L

∂u̇γ

)
− ∂L

∂uγ
= 0. (6.86)

Applying this equations keeping in mind that gαβ is the only quantity that
depends on uα, we get:

0 = d
ds [gαβδ

α
γ u̇

β + gαβ u̇
αδβγ ]− gαβ,γ u̇αu̇β

= d
ds [gγβ u̇

β + gαγ u̇
α]− gαβ,γ u̇αu̇β

= gγβ ü
β + gαγ ü

α + gγβ,αu̇
αu̇β + gαγ,β u̇

β u̇α − gαβ,γ u̇αu̇β

= 2gγβü
β + [gγβ,α + gαγ,β − gαβ,γ ]u̇αu̇β

= δσβ ü
β + 1

2g
γσ[gγβ,α + gαγ,β − gαβ,γ ]u̇αu̇β

where the last equation was obtained contracting with 1
2g
γσ to raise indices.

Comparing with the expression for the Christoffel symbols found in equation
4.76, we get

üσ + Γσαβ u̇
αu̇β = 0

which are exactly the equations of geodesics 6.65.

6.6.1 Example Geodesics of sphere
Let S2 be a sphere of radius a so that the metric is given by

ds2 = a2dθ2 + a2 sin2 θ dφ2.

Then the Lagrangian is

L = a2θ̇2 + a2 sin2 θ φ̇2.

The Euler-Lagrange equation for the φ coordinate is

d

ds
(
∂L

∂φ̇
)− ∂L

∂φ
= 0,

d

ds
(2a2 sin2 θφ̇) = 0,

and therefore the equation integrates to a constant

sin2 θ φ̇ = k.
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Rather than trying to solve the second Euler-Lagrange equation for θ, we evoke
a standard trick that involves reusing the metric. It goes as follows:

sin2 θ
dφ

ds
= k,

sin2 θ dφ = k ds,

sin4 θ dφ2 = k2ds2,

sin4 θ dφ2 = k2(a2dθ2 + a2 sin2 θ dφ2),

(sin4 θ − k2a2 sin2 θ) dφ2 = a2k2dθ2.

The last equation above is separable and it can be integrated using the substi-
tution u = cot θ.

dφ =
ak

sin θ
√

sin2 θ − a2k2
dθ,

=
ak

sin2 θ
√

1− a2k2 csc2 θ
dθ,

=
ak

sin2 θ
√

1− a2k2(1 + cot2 θ)
dθ,

=
ak csc2 θ√

1− a2k2(1 + cot2 θ)
dθ,

=
ak csc2 θ√

(1− a2k2)− a2k2 cot2 θ
dθ,

=
csc2 θ√

1−a2k2
a2k2 − cot2 θ

dθ,

=
−1√
c2 − u2

du, where( c2 = 1−a2k2
a2k2 ).

φ = − sin−1( 1
c cot θ) + φ0.

Here, φ0 is the constant of integration. To get a geometrical sense of the
geodesics equations we have just derived, we rewrite the equations as follows:

cot θ = c sin(φ0 − φ),

cos θ = c sin θ(sinφ0 cosφ− cosφ0 sinφ),

a cos θ = (c sinφ0)(a sin θ cosφ)− (c cosφ0)(a sin θ sinφ.)

z = Ax−By, where A = c sinφ0, B = c cosφ0.

We conclude that the geodesics of the sphere are great circles determined by
the intersections with planes through the origin.

6.6.2 Example Geodesics in orthogonal coordinates.
In a parametrization of a surface in which the coordinate lines are orthogonal,
F = 0. Then first fundamental form is,

ds2 = E du2 +Gdv2,
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and we have the Lagrangian,

L = Eu̇2 +Gv̇2.

The Euler-Lagrange equations for the variable u are:

d

ds
(2Eu̇)− Euu̇2 −Guv̇2 = 0,

2Eü+ (2Euu̇+ 2Ev v̇)u̇− Euu̇2 −Guv̇2 = 0,

2Eü+ Euu̇
2 + 2Evu̇v̇ −Guv̇2 = 0.

Similarly for the variable v,

d

ds
(2Gu̇)− Evu̇2 −Gv v̇2 = 0,

2Gv̈ + (2Guu̇+ 2Gv v̇)v̇ − Evu̇2 −Gv v̇2 = 0,

2Gv̈ − Evu̇2 + 2Guu̇v̇ +Gv v̇
2 = 0.

So, the equations of geodesics can be written neatly as,

ü+
1

2E
[Euu̇

2 + 2Evu̇v̇ −Guv̇2] = 0,

v̈ +
1

2G
[Gv v̇

2 + 2Guu̇v̇ − Evu̇2] = 0. (6.87)

6.6.3 Example Geodesics of surface of revolution
The first fundamental form a surface of revolution z = f(r) in cylindrical coor-
dinates as in 4.7, is

ds2 = (1 + f ′2) dr2 + r2 dφ2, (6.88)

Of course, we could use the expressions for the equations of geodesics we just
derived above, but since the coefficients are functions of r only, it is just a easy
to start from the Lagrangian,

L = (1 + f ′2) ṙ2 + r2φ̇2.

Since there is no dependance on φ, the Euler-Lagrange equation on φ gives rise
to a conserved quantity.

d

ds
(2r2φ̇) = 0,

r2φ̇ = c (6.89)

where c is a constant of integration. If the geodesic α(s) = α(r(s), φ(s)) rep-
resents the path of a free particle constrained to move on the surface, this
conserved quantity is essentially the angular momentum. A neat result can be
obtained by considering the angle σ that the tangent vector V = α′ makes with
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a meridian. Recall that the length of V along the geodesic is constant, so let’s
set ‖V ‖ = k. From the chain rule we have

α′(t) = xr
dr

ds
+ xφ

dφ

ds
.

Then

cosσ =
< α′,xφ >

‖α′‖ · ‖xφ‖
=
Gdφ
ds

k
√
G
,

=
1

k

√
G
dφ

ds
=

1

k
rφ̇.

We conclude from 6.89, that for a surface of revolution, the geodesics make an
angle σ with meridians that satisfies the equation

r cosσ = constant. (6.90)

This result is called Clairaut’s relation. Writing equation 6.89 in terms of dif-
ferentials, and reusing the metric as we did in the computation of the geodesics
for a sphere, we get

r2 dφ = c ds,

r4 dφ2 = c2 ds2,

= c2[(1 + f ′2) dr2 + r2 dφ2],

(r4 − c2r2) dφ2 = c2[(1 + f ′2) dr2,

r
√
r2 − c2 dφ = c

√
1 + f ′2 dr,

so

φ = ±c
∫ √

1 + f ′2

r
√
r2 − c2

dr. (6.91)

If c = 0, then the first equation above gives φ =constant, so the meridians are
geodesics. The parallels r =constant are geodesics when f ′(r) = ∞ in which
case the tangent bundle restricted to the parallel is a cylinder with a vertical
generator.

In the particular case of a cone of revolution with a generator that makes
an angle α with the z-axis, f(r) = cot(α)r, equation 6.91 becomes:

φ = ±c
∫ √

1 + cot2 α

r
√
r2 − c2

dr

which can be immediately integrated to yield

φ = ± cscα sec−1(r/c) (6.92)

As shown in figure 6.4, a ribbon laid flatly around a cone follows the path of
a geodesic. None of the parallels, which in this case are the generators of the
cone, are geodesics.
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Fig. 6.4: Geodesics on a Cone.

6.7 Geodesics in GR

6.7.1 Example Morris-Thorne (MT) wormhole

In 1987, Michael Morris and Kip Thorne from the California Institute of Tech-
nology proposed a tantalizing simple model for teaching general relativity, by
alluding to interspace travel in a geometry of traversable wormhole. We con-
straint the discussion purely to geometrical aspects of the model and not the
physics of stress and strains of a “traveler” traversing the wormhole. The MT
metric for this spherically symmetric geometry is

ds2 = −c2dt2 + dl2 + (b20 + l2) (dθ2 + sin2 θ dφ2), (6.93)

where b0 is a constant. The obvious choice for a coframe is

θ0 = c dt, θ2 =
√
b2o + l2 dθ,

θ1 = dl, θ3 =
√
b2o + l2 sin θ dφ.

We have dθ0 = dθ1 = 0. To find the connection forms we compute dθ2 and dθ3,
and rewrite in terms of the coframe. We get

dθ2 =
l√

b2o + l2
dl ∧ dθ = − l√

b2o + l2
dθ ∧ dl,

= − l

b2o + l2
θ2 ∧ θ1,

dθ3 =
l√

b2o + l2
sin θ dl ∧ dφ+ cos θ

√
b2o + l2dθ ∧ dφ,

= − l

b2o + l2
θ3 ∧ θ1 − cot θ√

b2o + l2
θ3 ∧ θ2.

Comparing with the first equation of structure, we start with simplest guess for
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the connection forms ω’s. That is, we set

ω2
1 =

l

b2o + l2
θ2,

ω3
1 =

l

b2o + l2
θ3,

ω3
2 =

cot θ√
b2o + l2

θ3.

Using the antisymmetry of the ω’s and the diagonal metric, we have ω2
1 =

−ω1
2, ω1

3 = −ω3
1, and ω2

3 = −ω3
2. This choice of connection coefficients

turns out to be completely compatible with the entire set of Cartan’s first
equation of structure, so, these are the connection forms, all other ω’s are
zero. We can then proceed to evaluate the curvature forms. A straightforward
calculus computation which results in some pleasing cancellations, yields

Ω1
2 = dω1

2 + ω2
1 ∧ ω2

1 = − b2o
(b2o + l2)2

θ1 ∧ θ2,

Ω1
3 = dω1

3 + ω1
2 ∧ ω2

3 = − b2o
(b2o + l2)2

θ1 ∧ θ3,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 =
b2o

(b2o + l2)2
θ2 ∧ θ3.

Thus, from equation 6.36, other than permutations of the indices, the only
independent components of the Riemann tensor are

R2323 = −R1212 = R1313 =
b2o

(b2o + l2)2
,

and the only non-zero component of the Ricci tensor is

R11 = −2
b2o

(b2o + l2)2
.

Of course, this space is a 4-dimensional continuum, but since the space is spher-
ically symmetric, we may get a good sense of the geometry by taking a slice
with θ = π/2 at a fixed value of time. The resulting metric ds2 for the surface
is

ds2
2 = dl2 + (b2o + l2) dφ2. (6.94)

Let r2 = b2o + l2. Then dl2 = (r2/l2) dr2 and the metric becomes

ds2
2 =

r2

r2 − b2o
dr2 + r2 dφ2, (6.95)

=
1

1− b2o
r2

dr2 + r2 dφ2. (6.96)
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Comparing to 4.26 we recognize this to be a catenoid of revolution, so the equa-
tions of geodesics are given by 6.91 with f(r) = b0 cosh−1(r/b0). Substituting
this value of f into the geodesic equation, we get

φ = ±c
∫

1√
r2 − b2o

√
r2 − c2

dr. (6.97)

There are three cases. If c = bo, the integral gives immediately

φ = ±(c/b0) tanh−1(r/b0).

Fig. 6.5: Geodesics on Catenoid.

We consider the case c > b0. The remaining case can be treated in a similar
fashion. Let r = c/ sinβ. Then

√
r2 − c2 = r cosβ and dr = −r cotβ dβ, so,

assuming the initial condition φ(0) = 0, the substitution leads to the integral

φ = ±c
∫ s

0

1

r cosβ
√

c2

sin2 β
− b2o

(−r cosβ)

sinβ
dβ,

= ±c
∫ s

0

1√
c2 − b2o sin2 β

dβ,

= ±
∫ s

0

1√
1− k2 sin2 β

dβ, (k = bo/c) (6.98)

= F (s, k), (6.99)

where F (s, k) is the well-known incomplete elliptic integral of the first kind.
Elliptic integrals are standard functions implemented in computer algebra

systems, so it is easy to render some geodesics as shown in figure 6.5. The plot
of the elliptic integral shown here is for k = 0.9. The plot shows clearly that
this is a 1-1, so if one wishes to express r in terms of φ one just finds the inverse
of the elliptic integral which yields a Jacobi elliptic function. Thomas Muller
has created a neat Wolfram-Demonstration that allows the user to play with
MT wormhole geodesics with parameters controlled by sliders.

6.7.2 Example Schwarzschild Metric



6.7. GEODESICS IN GR 221

In this section we look at the geodesic equations in a Schwarzschild gravitational
field, with particular emphasis on the bounded orbits. We write the metric in
the form

ds2 = −h(r) dt2 +
1

h(r)
dr2 + r2(dθ2 + sin θ dφ2), (6.100)

where

h(r) = 1− 2GM

r
. (6.101)

Thus, the Lagrangian is

L = −h ṫ2 +
1

h
ṙ2 + r2θ̇2 + r2 sin θφ̇2. (6.102)

The Euler-Lagrange equations for g00, g22 and g33 yield

d

ds

[
−2h

dt

ds

]
= 0,

d

ds

[
r2 dθ

ds

]
− r2 sin θ cos θ

[
dφ

ds

]2

= 0,

d

ds

[
2r2 dφ

ds

]
= 0

If in the equation for g22, one chooses initial conditions θ(0) = π/2, θ̇(0) = 0,
we get θ(s) = π/2 along the geodesic. We infer from rotation invariance that
the motion takes place on a plane. Hereafter, we assume we have taken these
initial conditions. From the other two equations we obtain

h
dt

ds
= E,

r2 dφ

ds
= L.

for some constants E and L. We recognize the conserved quantities as the
“energy” and the angular momentum. Along the geodesic of a massive particle,
with unit time-like tangent vector, we have

− 1 = gµν
dxµ

ds

dxν

ds
(6.103)

The equations of motion then reduce to

−1 = −h
[
dt

ds

]2

+
1

h

[
dr

ds

]2

+ r2

[
dφ

ds

]2

,

−1 = −E
2

h
+

1

h

[
dr

ds

]2

+
L2

r2
,

E2 =

[
dr

ds

]2

+ h

[
1 +

L2

r2

]
.
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Hence, we obtain the neat equation,

E2 =

[
dr

ds

]2

+ V (r), (6.104)

where V (r) represents the effective potential.

V (r) =

[
1− 2GM

r

] [
1 +

L2

r2

]
,

= 1− 2GM

r
+
L2

r2
− 2MGL2

r3
. (6.105)

If we let V̂ = V/2 in this expression we recognize the classical 1/r potential,
and the 1/r2 term corresponding to the Coriolis contribution associated with
the angular momentum. The 1/r3 term is a new term arising from general
relativity. Clearly we must have E2 < V (r). There are multiple cases depending

Fig. 6.6: Effective Potential for L = 3, 4, 5

on the values of E and L and the nature of the equilibrium points. Here we are
primarily concerned with bounded orbits, so we seek conditions for the particle
to be in a potential well. This presents us with a nice calculus problem. We
compute V ′(r) and set equal to zero to find the critical points

V ′(r) =
2

r4
(GMr2 − L2r + 3GML2) = 0.

The discriminant of the quadratic is

D = L2 − 12G2M2.

If D < 0 there are no critical points. In this case, V (r) is a monotonically
increasing function on the interval (2MG,∞), as shown in the bottom left
graph in figure 6.6. The maple plots in this figure are in units with GM = 1.
In the case D < 0, all trajectories either fall toward the event horizon or escape
to infinity.
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If D > 0, there are two critical points

r1 =
L2 − L

√
L2 − 12G2M2

2GM
,

r2 =
L2 + L

√
L2 − 12G2M2

2GM
.

The critical point r1 is a local maximum associated with an unstable circular
orbit. The critical point r2 > r1 gives a stable circular orbit. Using the standard
calculus trick of multiplying by the conjugate of the radical in the first term,
we see that

r1 → 3GM,

r2 →
L2

GM
,

as L → ∞. For any L, the properties of the roots of the quadratic imply
that r1r2 = 3L2. As shown in the graph 6.6, as L gets larger, the inner radius
approaches 3GM and the height of the bump increases, whereas the outer radius
recedes to infinity. As the value of D approaches 0, the two orbits coalesce at
L2 = 12G2M2, which corresponds to r = 6GM , so this is the smallest value of
r at which a stable circular orbit can exist. Since V (r) → 1 as r → ∞, to get
bounded orbits we want a potential well with V (r1) < 1. We can easily verify
that when L = 4GM the local maximum occurs at r1 = 4GM , which results
in a value of V (r1) = 1. This case is the one depicted in the middle graph in
figure 6.6, with the graph of V ′(r) on the right showing the two critical points
at r1 = 4GM, r2 = 12GM . Hence the condition to get a bounded orbit is

2
√

3GM < L < 4GM,

E2 < V (r1), r > r1,

so that the energy results in the particle trapped in the potential well to the
right of r1. This is the case that applies to the modification of the Kepler orbits
of planets. If we rewrite

dr

ds
=
dr

dφ

dφ

ds
=
L

r2

dr

dφ

and substitute into equation 6.104, we get

L2

r4

[
dr

dφ

]2

= E2 −
[
1 +

L2

r2

] [
1− 2GM

r

]
.

If now we change variables to u = 1/r, we obtain

du

dφ
= − 1

r2

dr

dφ
= −u2 dr

dφ
,

and the orbit equation becomes[
du

dφ

]2

=
1

L2
[E2 − (1 + L2u2)(1− 2GMu)],

φ =

∫
Ldu√

E2 − (1 + L2u2)(1− 2GML2u)
+ φ0.
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The solution of the orbit equation is therefore reduced to an elliptic integral. If
we expand the denominator

φ =

∫
Ldu√

(E2 − 1) + 2GMu− L2u2 + 2GML2u3
+ φ0,

and neglect the cubic term, we can complete the squares of the remaining
quadratic. The integral becomes one of standard inverse cosine type; hence,
the solution gives the equation of an ellipse in polar coordinates

u =
1

r
= C(1 + e cos(φ− φ0)),

for appropriate constants C, shift φ0 and eccentricity e. The solution is auto-
matically expressed in terms of the energy and the angular momentum of the
system. More careful analysis of the integral shows that the inclusion of the
cubic term perturbs the orbit by a precession of the ellipse. While this ap-
proach is slicker, we prefer to use the more elementary procedure of differential
equations. Differentiating with respect to φ the equation

L2

[
du

dφ

]2

= (E2 − 1) + 2GMu− L2u2 + 2GML2u3,

and cancelling out the common chain rule factor du/dφ, we get

d2u

dφ2
=
GM

L2
− u+ 3GMu2

Introducing a dimensionless parameter

ε =
3G2M2

L2
,

we can rewrite the equation of motion as

d2u

dφ2
+ u =

GM

L2
+

L2

GM
u2ε. (6.106)

The linear part of the equation corresponds precisely to Newtonian motion, and
ε is small, so we can treat the quadratic term as a perturbation

u = u0 + u1ε+ u2ε
2 + . . . .

Substituting u into equation 6.106, the first approximation is the linear approx-
imation given by

u′′0 + u =
GM

L2
.

The homogenous solution is of the form u = A cos(φ − φ0), where A and φ0

are the arbitrary constants, and the particular solution is a constant. So the
general solution is

u0 =
GM

L2
+A cos(φ− φ0),

=
GM

L2
[1 + e cos(φ− φ0)], e =

AL2

GM
.
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Without loss of generality, we can align the axes and set φ0 = 0 . In the
Newtonian orbit, we would write u0 = 1/r, thus getting the equation of a polar
conic.

u0 =
GM

L2
(1 + e cosφ) (6.107)

In the case of the planets, the eccentricity e < 1, so the conics are ellipses.
Having found u0 we reinsert u into the differential equation 6.106 and keeping
only the terms of order ε. We get

(u0 + u1ε)
′′ + (u0 + u1ε) =

GM

L2
+

L2

GM
ε(u0 + u1ε)

2,

(u′′0 + u0 −
GM

L2
) + (u′′1 + u1)ε =

L2

GM
u2

0ε.

Thus, the result is a new differential equation for u1,

u′′1 + u′1 =
L2

GM
u2

0,

=
L2

GM
[(1 + 1

2e
2) + 2e cosφ+ 1

2e
2 cos 2φ].

The equation is again a linear inhomogeneous equation with constant coeffi-
cients, so it is easily solved by elementary methods. We do have to be a bit
careful since we have a resonant term on the right hand side. The solution is

u1 =
L2

GM
[(1 + 1

2e
2) + 2eφ cosφ− 1

6e
2 cos 2φ].

The resonant term φ cosφ makes the solution non-periodic, so this is the term
responsible for the precession of the elliptical orbits. The precession is obtained
by looking at the perihelion, that is, the point in the elliptical orbit at which
the planet is closest to the sun. This happens when

du

dφ
≈ d

dφ
(u0 + u1) = 0,

− sinφ+ (sinφ+ eφ cosφ+ 1
3e sinφ) = 0.

Starting with the solution φ = 0, after on revolution, the perihelion drifts to
φ = 2π+δ. By the perturbation assumptions, we assume δ is small, so to lowest
order, the perihelion advance in one revolution is

δ = 2πε =
6πG2M2

L2
. (6.108)

From equation 6.107 for the Newtonian elliptical orbit, the mean distance a to
the sun is given by the average of the aphelion and perihelion distances, that is

a =
1

2

[
L2/GM

1 + e
+
L2/GM

1− e

]
=

L2

GM

1

1− e2
.
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Thus, if we divide by the period T , the rate of perihelion advance can be written
in more geometric terms as

δ =
6πGM

a(1− e2)T
.

The famous computation by Einstein of a precession of 43.1” of an arc per
century for the perihelion advance of the orbit of Mercury, still stands as one
of the major achievements in modern physics.

For null geodesics, equation 6.103 is replaced by

0 = gµν
dxµ

ds

dxν

ds
,

so the orbit given by the simpler equation

E2 =

[
dr

ds

]2

+
L2

r2
h.

Performing the change of variables u = 1/r, we get

d2u

dφ2
+ u = 3GMu2.

Consider the problem of light rays from a distant star grazing the sun as they ap-
proach the earth. Since the space is asymptotically flat, we expect the geodesics
to be asymptotically straight. The quantity 3GM is of the order of 2km, so it is
very small compared to the radius of the sun, so again we can use perturbation
methods. We let ε = 3GM and consider solutions of equation

u′′ + u = εu2,

of the form
u = u0 + u1ε.

To lowest order the solutions are indeed straight lines

u0 = A cosφ+B sinφ,

1 = Ar cosφ+Br sinφ,

1 = Ax+By

Without loss of generality, we can align the vertical axis parallel to the incoming
light with impact parameter b (distance of closest approach)

u0 =
1

b
cosφ.

As above, we reinsert the u into the differential equation and compare the
coefficients of terms of order ε. We get an equation for u1,

u′′1 + u1 =
1

b2
cos2 φ =

1

2b2
(1 + cos 2φ).
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We solve the differential equation by the method of undetermined coefficients
and thus we arrive at the perturbation solution to order ε

u =
1

b
cosφ+

2ε

3b2
− ε

3b2
cos2 φ.

To find the the asymptotic angle of the outgoing photons, we let r → ∞ or
u→ 0. Thus we get a quadratic equation for cosφ.

cosφ = −2ε

3b
= −2GM

b

Set φ = π
2 + δ. Since δ is small, we have sin δ ≈ δ, and we see that δ = 2GM/b

is the approximation of the deflection angle of one of the asymptotes. The total
deflection is twice that angle

2δ =
4GM

b
.

The computation results in a deflection by the sun of light rays from a distant
star of about 1.75”. This was corroborated in an experiment lead by Eddington
during the total solar eclipse of 1919. The part of the expedition in Brazil was
featured in the 2005 movie, The House of Sand. For more details and more
careful analysis of the geodesics, see for example, Misner Thorne and Wheeler
[21].

6.8 Gauss-Bonnet Theorem

This section is dedicated to the memory of Professor S.-S. Chern. I prelude
the section with a short anecdote that I often narrate to my students. In
June 1979, an international symposium on differential geometry was held at the
Berkeley campus in honor of the retirement of Professor Chern. The invited
speakers included an impressive list of the most famous differential geometers
at the time, At the end of the symposium, Chern walked on the stage of the
packed auditorium to give thanks and to answer some questions. After a few
short remarks, a member of the audience asked Chern what he thought was
the most important theorem in differential geometry. Without any hesitation
he answered, “there is only one theorem in differential geometry, and that is
Stokes’ theorem.” This was followed immediately by a question about the most
important theorem in analysis. Chern gave the same answer: “there is only one
theorem in analysis, Stokes’ theorem. A third person then asked Chern what
was the most important theorem in Complex Variables. To the amusement of
the crowd, Chern responded, “There is only one theorem in complex variables,
and that that is Cauchy’s theorem. But if one assumes the derivative of the
function is continuous, then this is just Stokes’ theorem.” Now, of course it
is well known that Goursat proved that the hypothesis of continuity of the
derivative is automatically satisfied when the function is holomorphic. But the
genius of Chern was always his uncanny ability to extract the essential of what
makes things work, in the simplest terms.

The Gauss-Bonnet theorem is rooted on the theorem of Gauss (4.72), which
combined with Stokes’ theorem, provides a beautiful geometrical interpretation
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of the equation. This is undoubtedly part of what Chern had in mind at the
symposium, and also when wrote in his Euclidean Differential Geometry Notes
(Berkeley 1975 ) [4] that the theorem has “profound consequences and is perhaps
one of the most important theorems in mathematics.”

Let β(s) by a unit speed curve on an orientable surface M , and let T be the
unit tangent vector. There is Frenet frame formalism for M , but if we think of
the surface intrinsically as 2-dimensional manifold, then there is no binormal.
However, we can define a “geodesic normal” taking G = J(T ), where J is
the symplectic form 5.50, Then the geodesic curvature is given by the Frenet
formula

T ′ = κgG. (6.109)

6.8.1 Proposition Let {e1, e2} be an orthonormal on M , and let β(s) be a
unit speed curve as above, with unit tangent T . If φ is the angle that T makes
with e1, then

κg =
∂φ

∂s
− ω1

2(T ). (6.110)

Proof Since {T,G} and {e1, e2} are both orthonormal basis of the tangent
space, they must be related by a rotation by an angle φ, that is[

T
G

]
=

[
cosφ sinφ
− sinφ cosφ

] [
e1

e2

]
, (6.111)

that is,

T = (cosφ)e1 + (sinφ)e2,

G = −(sinφ)e1 + (cosφ)e2. (6.112)

Since T = β′, and β′′ = ∇tT we have

β′′ = −(sinφ)
∂φ

∂s
e1 + cosφ∇T e1 + (cosφ)

∂φ

∂s
e2 + sinφ∇T e2,

= −(sinφ)
∂φ

∂s
e1 + (cosφ)ω2

1(T )e2 + (cosφ)
∂φ

∂s
e2 + (sinφ)ω1

2(T )e1,

= [
∂φ

∂s
− ω1

2(T )][−(sinφ)e1] + [
∂φ

∂s
− ω1

2(T )][(cosφ)e2],

= [
∂φ

∂s
− ω1

2(T )][−(sinφ)e1 + (cosφ)e2],

= [
∂φ

∂s
− ω1

2(T )]G,

= κgG.

comparing the last two equations, we get the desired result.
This theorem is related to the notion discussed in figure 6.2 to the effect that

in a space with curvature, the parallel transport of a tangent vector around a
closed curve, does not necessarily result on the same vector with which one
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started. The difference in angle ∆φ between a vector and the parallel transport
of the vector around a closed curve C is called the holonomy of the curve. The
holonomy of the curve is given by the integral

∆φ =

∫
C

ω1
2(T ) ds. (6.113)

6.8.2 Definition Let C be a smooth closed curve on M parametrized by
arc length with geodesic curvature κg. The line integral

∮
C
κg ds is called the

total geodesic curvature. If the curve is piecewise smooth, the total geodesic
curvature is the sum of the integrals of each piece.

A circle of radius R gives an elementary example. The geodesic curvature
is the constant 1/R, so the total geodesic curvature is (1/R)2πR = 2π.

If we integrate formula 6.110 around a smooth simple closed curve C which
is the boundary of a region R and use Stokes’ Theorem, we get∮

C

κg ds =

∮
C

dφ−
∮
C

ω1
2 ds,

=

∮
C

dφ−
∫ ∫

R

dω1
2.

For a smooth simple closed curve,
∫
C
dφ = 2π. Using the Cartan-form version

of the theorema egregium 4.106 we get immediately∫ ∫
R

K dS +

∫
C

κg ds = 2π. (6.114)

Fig. 6.7: Turning Angles

If the boundary of the region consists of k piecewise continuous functions as
illustrated in figure 6.7, the change of the angle φ along C is still 2π, but the
total change needs to be modified by adding the exterior angles αk. Thus, we
obtain a fundamental result called the Gauss-Bonnet formula,
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6.8.3 Theorem ∫ ∫
R

K dS +

∫
C

κg ds+
∑
k

αk = 2π. (6.115)

Every interior ιk angle is the supplement of the corresponding exterior αk angle,
so the Gauss Bonnet formula can also be written as∫ ∫

R

K dS +

∫
C

κg ds+
∑
k

(π − ιk) = 2π. (6.116)

The simplest manifestation of the Gauss-Bonnet formula is for a triangle
in the plane. Planes are flat surfaces, so K = 0 and the straight edges are
geodesics, so κg = 0 on each of the three edges. The interior angle version of
the formula then just reads 3π − ι1 − ι2 − ι3 = 2π, which just says that the
interior angles of a flat triangle add up to π. Since a sphere has constant positive
curvature, the sum of the interior angles of a spherical triangle is larger than π.
That amount of this sum over 2π is called the spherical excess. For example,
the sum of the interior angles of a spherical triangle that is the boundary of one
octant of a sphere is 3π/2, so the spherical excess is π/2.

6.8.4 Definition The quantity
∫ ∫

K dS is called the total curvature

6.8.5 Example A sphere of radius R has constant Gaussian Curvature 1/R2.
The surface area of the sphere is 4πR2, so the total Gaussian curvature for the
sphere is 4π.

6.8.6 Example For a torus generated by a circle of radius a rotating about
an axis with radius b as in example (4.40), the differential of surface is dS =
a(b+ a cos θ) dθdφ, and the Gaussian curvature is K = cos θ/[a(b+ a cos θ)], so
the total Gaussian curvature is∫ 2π

0

∫ 2π

0

cos θ dθdφ = 0.

We now relate the Gauss-Bonnet formula to a topological entity.

Fig. 6.8: Triangulation
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6.8.7 Definition Let M be a 2-dimensional manifold. A triangulation of the
surface is subdivision of the surface into triangular regions {4k} which are the
images of regular triangles under a coordinate patch, such that:

1) M =
⋃
k4k.

2) 4i
⋂
4j is either empty, or a single vertex or an entire edge.

3) All the triangles are oriented in the same direction,
For an intuitive visualization of the triangulation of a sphere, think of inflating a
tetrahedron or an octahedron into a spherical balloon. We state without proof:

6.8.8 Theorem Any compact surface can be triangulated.

6.8.9 Theorem Given a triangulation of a compact surface M , let V be the
number of vertices, E the number of edges and F the number of faces. Then
the quantity

χ(M) = V − E + F, (6.117)

is independent of the triangulation. In fact the quantity is independent of any
“polyhedral” subdivision. This quantity is a topological invariant called the
Euler characteristic.

6.8.10 Example

1. A balloon-inflated tetrahedron has V = 4, E = 6, F = 4, so the Euler
characteristic of a sphere is 2.

2. A balloon-inflated octahedron has V = 6, E = 12, F = 8, so we get the
same number 2.

3. The diagram on the right of gigure 6.8 represents a topological torus. In
the given rectangle, opposites sides are identified in the same direction.
The number of edges without double counting are shown in red, and the
number of vertices not double counted are shown in black dots. We have
V = 6, E = 18 F = 12. So the Euler characteristic of a torus is 0.

4. In one has a compact surface, one can add a “handle”, that is, a torus, by
the following procedure. We excise a triangle in each of the two surfaces
and glue the edges. We lose two faces and the number of edges and vertices
cancel out, so the Euler characteristic of the new surface decreases by 2.
The Euler characteristic of a pretzel is −4.

5. The Euler characteristic of an orientable surface of genus g, that is, a
surface with g holes is given by χ(M) = 2− 2g.

6.8.11 Theorem Gauss-Bonnet
Let M be a compact, orientable surface. Then

1

2π

∫
M

K dS = χ(M). (6.118)
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Proof Triangulate the surface so that M =
⋃F
k=14k. We start the Gauss-

Bonnet formula∫ ∫
M

K dS =

F∑
k=1

∫ ∫
4k

K dS = −
F∑
k=1

[∮
δ4k

κg ds+ π + (ιk1 + ιk2 + ιk2))

]
,

where F is the number of triangles and the ιk’s are the interior angles of triangle
4k. The line integrals of the geodesic curvatures all cancel out since each edge
in every triangle is traversed twice, each in opposite directions. Rewriting the
equation, we get ∫ ∫

M

K dS = −πF + S

where S is the sum of all interior angles. Since the manifold is locally Euclidean,
the sum of all interior angles at a vertex is 2π, so we have∫ ∫

M

K dS = −πF + 2πV

There are F faces. Each face has three edges, but each edge is counted twice,
so 3F = 2E, and we have F = 2E− 2F Substituting in the equation above, we
get, ∫ ∫

M

K dS = −π(2E − 2F ) + 2πV = 2π(V − E + F ) = χ(M).

This is a remarkable theorem because it relates the bending invariant Gaus-
sian curvature to a topological invariant. Theorems such as this one which cut
across disciplines, are the most significant in mathematics. Not surprisingly, it
was Chern who proved a generalization of the Gauss-Bonnet theorem to general
orientable Riemannian manifolds of even dimensions [5].



Chapter 7

Groups of Transformations

7.1 Lie Groups

At the IX International Colloquium on Group Theoretical Methods in Physics
held in 1980 at Cocoyoc, Mexico, one of the invited addresses was delivered
by the famous mathematician Bertram Konstant, who years later would be
awarded the Wigner Medal. In his opening remarks, Konstant made the fol-
lowing intriguing statement, “In the 1800’s, Felix Klein and Sophus Lie decided
to divide mathematics among themselves. Klein took the discrete and Lie took
the continuous. I am here to tell you that they were both working on the same
thing.”

In this chapter we present an elementary introduction to Lie groups and
corresponding Lie algebras. A simple example of a Lie group is the circle group
U(1) = {z ∈ C : |z|2 = 1} which, as a manifold, corresponds to the unit circle
S1. In polar form, an element of this group can be written in the form eiθ.
The group multiplication z → eiθz corresponds to a rotation of the vector z
by an angle θ. Using the matrix representation 5.2.2 for complex numbers and
Euler’s formula eiθ = cos θ + i sin θ, we see that the group is isomorphic to
SO(2,R) as shown in example 3.4. This example captures the essence of what
we seek, that is, a group that is also a manifold and that can be associated
with some matrix group. A U(1) bundle consists of a base manifold M with a
structure that locally looks like a cross product of an open set in M with U(1).
Generalizations in which the fibers are Lie groups leads to a structure called
a principal fiber bundle. Lie Groups, Lie algebras and principal fiber bundles
provide the mathematical foundation in modelling symmetries in classical and
quantum physics. The subject is much too rich to give a comprehensive treat-
ment here, but we hope the material will serve as a starting block for further
study.

7.1.1 Definition A Lie group G is a group that is also a smooth manifold.

233
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It is assumed that the usual group multiplication and inverse operations,

µ : G×G→ G,

(g1, g2) 7→ g1g2,

ι : G→ G,

g 7→ g−1,

are C∞.

7.1.2 Definition A Lie subgroup is a subset H ⊂ G of a Lie group G, that
is itself a Lie group.

7.1.3 Examples

1. The (real) general linear group is the set of n× n matrices,

GL(n,R) = {A ∈Mn×n(R) : det(A) 6= 0}. (7.1)

Topologically, GL(n,R) is equivalent to Rn2

and has the structure of an
n2-dimensional differentiable manifold. The map det : GL(n,R) 7→ R
is continuous. The inverse image of 0 under this map is a closed space
and GL(n,R) is the complement, so GL(n,R) is an open subset of Rn2

and thus it is not compact. GL(n,R) is not connected being the union
of two disjoint open sets defined by whether det(A) > 0 or det(A) <
0. The connected component GL+(n,R) corresponding to det(A) > 0,
contains the identity. Furthermore, if det(A) > 0 and detB > 0, we have
det(AB) > 0 and det(A−1) > 0, so GL+(n,R) is a (non-compact) Lie
subgroup.

2. The subset of GL+(n,R) with the restriction det(A) = 1 is called the
special linear group SL(n,R). This is also a non-compact subgroup.

3. The complex general linear group is the set of n× n matrices,

GL(n,C) = {A ∈Mn×n(C) : det(A) 6= 0}. (7.2)

The subgroup of matrices A ∈ GL(n,C) with det(A) = 1 is called the
special linear group SL(n,C).

4. The real orthogonal group is the set of n× n real matrices

O(n,R) = {A ∈Mn×n(R) : A−1 = AT }. (7.3)

The condition A−1 = AT is equivalent to AAT = ATA = I. We have the
following

a) IT = I−1 = I, so I ∈ O(n,R).

b) If A,B ∈ O(n,R), then (AB)(AB)T = ABBTAT = AAT = I, so
AB ∈ O(n,R).



7.1. LIE GROUPS 235

c) If A ∈ O(n,R), then A−1(A−1)T = AT (AT )T = ATA = I.

Hence O(n,R) is a Lie subgroup of the GL(n,R). The map T (A) = AAT

is continuous and O(n,R) = T−1(I), so O(n,R) is closed.

If we denote by ek the kth column vector of A, then the matrix element
of ATA in the jth row and kth column is given by

(ej)
T ek =< ej , ek >= δjk.

Thus, the columns (and rows) of an orthogonal matrix constitute a set of
orthonormal vectors. There are n column vectors, so under the Euclidean
norm of Rn2

, we have ‖A‖2 = n. That is, elements of O(n,R) lie on

a sphere Sn
2−1, so the set is bounded. By the Heine-Borel theorem,

O(n,R) is compact. By equation 1.57 and the subsequent Theorem, we
can characterize the orthogonal group as the set of linear transformations
that preserves the standard metric g = diag(+1,+1, · · ·+ 1) in Rn.

5. If a matrix A is orthogonal, then the condition AAT = I implies that

det(AAT ) = det(A) det(AT ),

= det(A)2 = det(I),

so det(A) = ±1. We define the (real) special orthogonal group SO(n,R)
to be the subset of O(n,R) of orthogonal matrices A, with detA = 1.
SO(n,R) is a compact Lie subgroup of dimension 1

2n(n− 1).

6. The unitary group is the set if n× n matrices

U(n) = {A ∈Mn×n(C) : A−1 = A†}, (7.4)

where A† is the Hermitian adjoint. This is the complex analog of the
orthogonal group. The condition A−1 = A† is equivalent to AA† = I,
which implies that det(A) = ±1. The subgroup of unitary matrices A
with det(A) = 1 is called the Special Unitary group SU(n); it is a compact
group of dimension n2 − 1.

7. Let {M, g} be the pseudo-Riemannian manifold Rn with a type (p, q)
metric with signature g = diag(1, 1, · · · − 1,−1 . . .). The group of trans-
formations preserving this metric is called O(p, q). If in addition, the
matrices A ∈ O(p, q) are required to have det(A) = 1, the group is called
SO(p, q). These groups are not compact. The special case L = O(1, 3, )
is the group of transformations preserving the Minkowski metric. This
group is called the Lorentz group which, is central to relativistic physics.

8. In a completely analogous manner, let {M, g} be the pseudo-Riemannian
complex manifold Cn with a hermitian metric g = diag(1, 1, · · · − 1,−1)
of type (p, q). The group of transformations preserving this metric is
called U(p, q). If in addition, the matrices A ∈ U(p, q) are required to
have det(A) = 1, the group is called SU(p, q). These groups are also not
compact. The special case SU(2, 2) is isomorphic to the Poincaré group
and is of interest in twistor theory.
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9. Consider the space F2n, where F stands for the reals R, the complex C,
or the quaternion H algebras. Let (q1, . . . qn, p1, . . . pn) denote the local
coordinates. In the case F = R, we may think of the local coordinates as
representing position and momenta. Let Ω be the non-degenerate skew-
symmetric two-form

Ω = dqi ∧ dpi, i = 1 . . . n. (7.5)

The symplectic group Sp(2n,F) is the group of transformations preserving
the symplectic form Ω. The tensor components of Ω in standard basis are
given by

Ω =

[
0 In
−In 0

]
, (7.6)

where In is the identity n×n matrix. Then the symplectic group is defined
by

Sp(2n,F) = {A ∈M2n×2n(F) : ATΩA = Ω}. (7.7)

The symplectic group is an essential structure in the differential geome-
try description of Lagrangian and Hamiltonian mechanics. In the simplest
case in which F = R, and n = 1, the components of the canonical sym-
plectic form is the complex structure introduced in equation 5.50 in the
context of conformal maps. It is immediately clear that Sp(2,R) consists
of all 2 × 2 matrices A with det(A) = 1, so Sp(2,R) ∼= SL(2,R). The
symplectic groups are simply connected but not compact. We define the
compact group,

Sp(n) = Sp(2n,C) ∩ SU(2n),

that is, the space of all complex symplectic matrices which are also el-
ements of the special unitary group. Sp(n) can be identified with the
quaternionic unitary group U(n,H). In particular, Sp(1) is the set of
unit quaternions and Sp(1) ' SU(2) is topologically a three sphere S3.
More details on this topic appear later in the discussion of quaternions,
starting with equation 8.15

7.1.1 One-Parameter Groups of Transformations

In this section we formalize the notion of flows of vector fields mentioned in
definition 1.1.13. The concept of flows of vector fields permeates all of physics.
The classical description of magnetic fields illustrates this well. Consider for
example the Earth’s magnetic field. At any point around the planet, one as-
sociates a vector and a direction for the magnetic field at that point. If one
picks any such point and follows in an infinitesimal trajectory along the earth
magnetic field vector, one arrives at new point with corresponding field vector.
Iterating the process, one obtains an integral curve on which the vector field
restricted to that curve is tangential to the curve. Doing this at all points in a
neighborhood of the point then gives rise to a family non-intersecting integral
curves that we usually call the magnetic field lines. Magnetic field lines traced
by iron filings around a laboratory-grade magnetic sphere, give a geometrical
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rendition of the direction of the magnetic field at any point. The converse
notion of flows is also intuitively clear as shown in figure 7.1. If one has a non-
intersecting family of curves on a neighborhood of a point on a manifold, one
would expect that the tangent vectors to the family of curves would constitute
a vector field. Students acquainted with more advanced classical physics will
know that state space of a dynamical systems is equipped with a real value
function H called the Hamiltonian, which effectively represents the energy at
each point. Hamiltonian mechanics is then formulated in terms of a symplectic
structure that associates with H, a Hamiltonian vector field XH whose integral
curves correspond the solutions of the equations of motion. For a rigorous and
elegant treatment of this subject, see Abraham-Marsden [20].

Fig. 7.1: Integral Curve

7.1.4 One-Parameter group of diffeomor-
phisms
Let U ⊂ M be an open subset of an n-
dimensional manifold, p ∈ U , and let Iε =
(−ε, ε) with ε > 0 be an open interval in R.
A one-parameter group of diffeomorphisms is
a smooth map,

ϕt : Iε × U →M

(t, p) 7→ ϕt(p), |t| < ε,

with the following properties. Suppose that
t, s ∈ R, with |t|, |s| < ε, |s + t| < ε, and
φs(p), φt(p), φs+t(p) ∈ U , then

a) ϕs ◦ ϕt = ϕs+t,
b) ϕ

0
(p) = p for all p ∈ U.

The map ϕt is clearly a local diffeomorphism with inverse function given by
(ϕt)

−1 = ϕ−t. Now consider a vector field X such that Xp = ϕ′t(p) at each
point p = ϕ

0
(p), as shown in figure 7.1. If f : M → R is a smooth function,

then the action X on f as a linear derivation is given by the push-forward
formula 1.25

Xp(f) = ϕ′t(p)(f),

= (ϕt)∗(
d
dt )(f)|p,

=
d

dt
(f ◦ ϕt(p))|t=0

Conversely, if X is vector field given in local coordinates xµ in a neighborhood
of a point p, given by,

X = vµ
∂

∂xµ
, µ = 1 . . . n,

then, for a curve ϕt(p) with initial condition that ϕ0(p) = p, to have Xp as a
tangent vector, it must be the case that,

ϕ′t =
dxµ

dt

∂

∂xµ
= X.
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Thus, we are led to a system of first order ordinary differential equations,

dxµ

dt
= vµ(x1 . . . xµ).

subject to the condition xµ ◦ ϕ
0
(p) = vµ(p) By the existence and uniqueness

theorem of solutions of such systems, for sufficiently small ε, there exists a
unique integral curve that satisfies the equation on Iε = (−ε, ε). We conclude
that smooth vector fields can be viewed as generators of infinitesimal groups of
diffeomorphisms. The one-parameter group of diffeomorphisms ϕt is also called
the flow of the vector field X.

At this point it is worthwhile to review the notion of the push-forward of
a vector field first introduced in 1.11. Let ϕ : M → N be a smooth manifold
mapping and X ∈X (M). If g : N → R is a smooth function, the push-forward
of X is a vector field Y = ϕ∗X ∈X (N) defined by

(ϕ∗X)(g) = X(g ◦ ϕ).

More precisely, if p ∈M ,

Y (g)(ϕ(p)) = [X(g ◦ ϕ)](p),

= Xp(g ◦ ϕ)).

so that,
Y (g) ◦ ϕ = X(g ◦ ϕ).. (7.8)

Suppose that in addition, ϕ is a diffeomorphism, let ξt be a one-parameter
group associated with a vector field X ∈X (M). Then we can push-forward to
a one-parameter subgroup ψt associated with ϕ∗X in N given by

ψt = ϕ ◦ ξt ◦ ϕ−1, (7.9)

as illustrated in the commuting diagram,

M
ϕ−−→ N

ξt ↓ ψt ↓

M
ϕ−−→ N.

In other words, under a diffeomorphism ϕ, the integral curves of a vector field
X are mapped to the integral curves of ϕ∗X.

Diffeomorphisms also allow us to use the inverse of the push-forward to
pullback vectors, and push-forward functions with the inverse of the pullback.
Specifically, if f ∈ F (M) and Y ∈X (N),

ϕ∗Y (f) = (ϕ−1)∗Y (f) = Y (f ◦ ϕ−1), (7.10)

ϕ∗f = f ◦ ϕ−1 (7.11)

which we can write,
ϕ∗Y (f) = Y (ϕ∗f). (7.12)
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When ϕ is a diffeomorphism, one may extend the pullback to tensor fields.
Suppose M is an n-dimensional manifold. Since M locally looks like Rn, on
a coordinate patch on a neighborhood of point p we can pick an orthonormal
basis {e1 . . . , en} for the tangent space, with dual basis {θ1, . . . , θn}. Referring
back to section 2.2.1, a tensor field T ∈ T r

s (M) is a section of the bundle of
tensor products of the tangent and cotangent spaces. In the given basis the
tensor is an expression of the form,

T = T i1...irj1...js
(ei1⊗, · · · ⊗ eir ⊗ θj1 ⊗ · · · ⊗ θjs) (7.13)

The tensor components are defined as,

T i1...irj1...js
= T (θi1 , . . . , θir , ej1 , . . . ejs). (7.14)

Let t be a tensor field on N . The generalization of the pull-back 2.68 is given
by,

(ϕ∗t)p(θ
i1 , . . . , θir , ej1 , . . . ejs) = tϕ(p)(ϕ

−1
∗ θi1 , . . . , ϕ−1

∗ θir , ϕ∗ej1 , . . . ϕ∗ejs)
(7.15)

Once again, the fancy equation can be demystified as just a generalized ver-
sion of the chain rule. If the diffeomorphism is given in local coordinates by
yµ = fµ(xν), so that ek = ∂/∂xk and θk = dxk, equation 7.15 is the classical
transformation law for tensors,

(ϕ∗t)i1...irj1...js
= ∂yi1

∂xk1
. . . ∂y

ir

∂xkr
∂xl1

∂yj1
. . . ∂x

ls

∂yjs t
k1...kr
l1...ls

. (7.16)

The matrices ∂xν/∂yµ are allowed because ϕ is a diffeomorphism, so the Jaco-
bians are invertible. Of course, we can pull-back (or push-forward) vectors and
tensors if φ is a local diffeomorphism of M into itself.

Perhaps this is an appropriate time to generalize the coordinate-free exte-
rior derivative formula 6.28 to arbitrary forms. Let Λk(M) be the bundle of
alternating covariant tensors of rank k and denote the sections of the bundle
by Ωk(M). As in 2.3, sections of this bundle are called k-forms on M .

7.1.5 Definition Let ω be a k-form on M , and let {X1, . . . Xk+1} ∈X (M).
The exterior derivative of ω is the (k + 1)-form given by, (See, for example,
Spivak [34])

dω(X1, . . . Xk+1) =

k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i, . . . , Xk+1)∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

(7.17)

where the “hats” mean that these vectors are excluded. Thus, for a 2-form ω,
the formula gives

dω(X,Y, Z) =X(ω(Y, Z))− Y (ω(X,Z)) + Z(ω(X,Y ))

− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X).
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If one chooses local coordinates as in section 2.3, we find that the operator is
consistent with 2.65, and satisfies the properties in 2.66 and 2.69. In particular,
the following holds:

7.1.6 Theorem Let M, N be a manifolds, α ∈ Ωk(M), β ∈ Ωl(M), and
ϕ : M → N be a diffeomorphism as above. Then

a. d ◦ d = 0,
b. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,
c. ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β,
d. ϕ∗(d ω) = d(ϕ∗ω).

7.1.2 Lie Derivatives

Let ϕt be the one-parameter group of diffeomorphisms generated by the
integral curves of a vector field X. We can use the pullback and the push-
forward of ϕt to define a rate of change of functions, forms and vector fields in
the direction of X. If f ∈ F (M) is a smooth function on M , and p ∈ M is a
point on M , we define the Lie derivative of f with respect to X by

£Xpf ≡
d

dt
(ϕ∗t f)

∣∣∣∣
t=0

= lim
t→0

f ◦ ϕt(p)− f(p)

t
,

= Xp(f), (7.18)

= df(X)|p. (7.19)

which as expected, is just the directional derivative. If ω ∈ Ω1(M) is a one
form on M , we define the Lie derivative of ω at p by

(£Xω)(p) ≡ d

dt
(ϕ∗tω)

∣∣∣∣
t=0

,

= lim
t→0

(ϕ∗tω)(p)− ω(p)

t
.

This certainly has the right flavor of a derivative, namely, we pullback the form
from a nearby point, compute the difference quotient, and then measure the
infinitesimal change by evaluating the limit as t goes to 0. We will compute a
formula for £Xω a little later in this section. In a similar manner, if Y ∈X (M)
is another vector field in M , we define its Lie derivative along X by using the
push-forward

£XY = lim
t→0

Yp − (ϕt∗Y )p
t

where (ϕt∗Y )p = ϕt∗(Yφ−1
t (p)). That is, take the vector Y at ϕ−1

t (p) = ϕ−t(p),

push it forward to p and compare the infinitesimal change with Yp, as shown in
figure 7.2. Since ϕt is a diffeomorphism, we can pullback vectors by the inverse
of the push-forward, so we could equivalently define £XY in manner that looks
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Fig. 7.2: Lie Derivative

more like the definition for functions and forms

£XpY =
d

dt
(ϕ∗tY )

∣∣∣∣
t=0

(7.20)

=
d

dt
(ϕ−1
t )∗Y

∣∣∣∣
t=0

(7.21)

= lim
t→0

(ϕ−1
t )∗Yϕt(p) − Yp

t
(7.22)

In fact, since formula 7.15 shows that one can pull-back tensors in the case of
a diffeomorphism, the Lie derivative can be extended to a linear derivation on
the full tensor algebra.

7.1.7 Definition Let X be a vector field in M , and ϕt(p) be the one-
parameter family of diffeomorphisms generated by X, let T ∈ T r

s be a tensor
field. The Lie derivative of the tensor T with respect to X at p is defined as,

£XpT =
d

dt
(ϕ∗tT )

∣∣∣∣
t=0

or,

d

dt
φ∗tT = φ∗t£XT. (7.23)

That the second version of the definition follows from the first, can easily be
established by a quick computation

d

dt
φ∗tT =

d

ds
(φ∗s+tT )

∣∣∣∣
s=0

=
d

ds
(φ∗tφ

∗
sT )

∣∣∣∣
s=0

= φ∗t£XT

The operator £X : T r
s → T r

s is clearly linear and satisfies Leibnitz rule. We
have the following important theorem,

7.1.8 Theorem £XY = [X,Y ].
Proof Consider the function f ◦ ϕt. The Taylor expansion about the point p
gives

f ◦ ϕt = (f ◦ ϕt(p))(0) + t
d

dt
[f ◦ ϕt(p)]

∣∣∣∣
t=0

+ O(t2),

= f(p) + tXp + O(t2).
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Let f ∈ F (M). From the definition of the Lie derivative, we have

£XY = lim
t→0

Yp − (ϕt)∗Y

t

Applying this to f at p, we get,

£XpY (f) = lim
t→0

Y − (ϕt)∗Y

t

∣∣∣∣
p

(f),

= lim
t→0

Yp(f)− Yϕ−1
t (p)(f ◦ ϕt)
t

,

= lim
t→0

Yp(f)− Yϕ−1
t (p)(f(p) + tXp)

t
,

= lim
t→0

[
Yp(f)− Yϕ−1

t (p)(f)

t
− Yϕ−1

t (p)(X)(f)

]
,

= Xp(Y (f))− Yp(X(f)),

= [X,Y ]p(f)

7.1.9 Theorem If ϕ : M → N is a diffeomorphism and f ∈ F (M) is any
smooth function on M , then,

£ϕ∗X(ϕ∗f) = ϕ∗(£Xf) (7.24)

Proof

£ϕ∗X(ϕ∗f)|ϕ(p) = ϕ∗X|ϕ(p)(f ◦ ϕ−1),

= X(f ◦ ϕ−1 ◦ ϕ)(p),

= X(f)(p),

= X(f) ◦ ϕ−1|ϕ(p),

£ϕ∗X(ϕ∗f) = ϕ∗(£Xf).

7.1.10 Theorem If ϕ : M → N is a diffeomorphism and X,Y ∈X (M) are
vector fields on M , then,

£ϕ∗X(ϕ∗Y ) = ϕ∗(£XY ); that is,

[ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ]. (7.25)

Proof Let g ∈ F (N). By equation 7.8, we have to show that [ϕ∗X,ϕ∗Y ](g) ◦
ϕ = [X,Y ](g ◦ ϕ). We have,

[ϕ∗X,ϕ∗Y ](g) ◦ ϕ = [ϕ∗X,ϕ∗Y ],

= (ϕ∗X(ϕ∗Y (g)) ◦ ϕ− (ϕ∗Y (ϕ∗X(g)) ◦ ϕ,
= X(ϕ∗Y (g) ◦ ϕ)− Y (ϕ∗X(g) ◦ ϕ),

= X(Y (g ◦ ϕ))− Y (X(g ◦ ϕ)),

= [X,Y ](g ◦ ϕ).
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The Lie derivative satisfies the following,

7.1.11 Properties. Let f ∈ F , X, Y ∈X , and T1, T2 be tensors. Then
a) £Xf = X(f),
b) £XY = [X,Y ],
c) £X(fY ) = X(f)Y + f£XY ,
d) £X(T1 ⊗ T2) = £XT1 ⊗ T2 + T1 ⊗£XT2.
e) £X(C(T )) = C(£XT ), where C : T r

s → T r−1
s−1 is a contraction (See ??).

So, if ω is a one-form, we have,

£X〈ω|Y 〉 = 〈£Xω|Y 〉+ 〈ω|£XY 〉.

Consequently, the Lie derivative of a one form is given by,

〈£Xω|Y 〉 = £X〈ω|Y 〉 − 〈ω,£XY 〉,
£Xω(Y ) = £X(ω(Y ))− ω(£XY ),

= X(ω(Y ))− ω([X,Y ]) (7.26)

Now that we know the Lie derivative of functions, vector fields, and one forms,
it is a straight-forward exercise to use induction on tensor products, to find the
formula for the Lie derivative of any tensor field T ∈ T r

s . The formula is,

£X [T (ω1, . . . , ωr, X1, . . . Xs)] = £XT (ω1, . . . ωr, X1, . . . Xs, )

+

r∑
i=1

T (ω1, . . . ,£Xω
i, . . . , ωr, X1, . . . , Xs)

+

s∑
i=1

T (ω1, . . . , ωr, X1, . . . ,£XXi, . . . Xs, ).

(7.27)

If we set X = Xk∂k, the formula in component form reads

£XT
i1...ir
j1...js

= Xk∂kT
i1...ir
j1...js

+ (∂kX
i1)T k i2...irj1j2...js

+ (∂kX
i2)T i1k i3...irj1j2j3...js

+ . . .

− (∂j1X
k)T i1i2...irk j2...js

− (∂j2X
k)T i1i2i3...irj1k j3...js

− . . . . (7.28)

In a Riemannian manifold {M, g} with Levi-Civita connection ∇, the formula
above for the components of the Lie derivative is not manifestly covariant, but
it becomes so by replacing the ∂k’s by the covariant derivative ∇k. That is,

£XT
i1...ir
j1...js

= Xk∇kT i1...irj1...js

+ (∇kXi1)T k i2...irj1j2...js
+ (∇kXi2)T i1k i3...irj1j2j3...js

+ . . .

− (∇j1Xk)T i1i2...irk j2...js
− (∇j2Xk)T i1i2i3...irj1k j3...js

− . . . . (7.29)

One can verify directly, that all the extra terms with connection coefficients
cancel out, and the formula reduces to the previous one. If the components of
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the Riemannian metric are given by gµν = g(∂µ, ∂ν), and X = Xσ∂σ, we have

£Xgµν = Xσ∇σgµν + (∇µXσ)gσν + (∇νXσ)gνσ,

= ∇µXν +∇νXµ.

A vector field X that satisfies the equation

£Xg = 0 (7.30)

is called a Killing vector. If ϕt is the one-parameter subgroup corresponding to
the flow of a Killing vector, the solutions of the Killing equation

∇µXν +∇νXµ = 0 (7.31)

represent isometries of the manifold. In Minkowski space, the Killing vector
fields correspond to the generators of the Lorentz group discussed in section
8.2. Let α(t) be a geodesic in the manifold with velocity vector V given in local
coordinates by V = V µ∂µ = ẋµ(t)∂µ, and suppose that X = Xν∂ν is a Killing
vector, then,

∇V (V µXµ) = V ν∇ν(V µXµ),

= V νV µ∇νXµ + V νXµ∇νVµ,
= 1

2V
νV µ(∇νXµ +∇µXν) +XµV ν∇νVµ,

= 0

The first term vanishes because X is a Killing vector and the second because
V is geodesic, so that ∇V V = 0. Thus, the metric < V,X >= V µXµ is a con-
served quantity along the geodesic. Roughly speaking, the conserved quantity
associated with the local isometry is the momentum, which makes sense, since
a free particle travelling along a geodesic is not subjected to external forces.

7.1.12 Theorem If X ∈X (M) and ω ∈ Ωk(M), η ∈ Ωl(M), then,

d£Xω = £Xdω, (7.32)

£X(ω ∧ η) = £Xω ∧£Xη. (7.33)

Proof Let ϕt be the one-parameter flow of X. By definition,

£Xω(p) =
d

dt
(ϕ∗tω(p))|t=0.

The theorem follows immediately from the fact that d is linear and so, it com-
mutes with d/dt, plus the already established formulas ϕ∗t dω = dϕ∗tω, and
ϕ∗t (ω ∧ η) = ϕ∗tω ∧ ϕ∗t η.

We recall the definition if the interior product 2.23. Let M be a manifold,
X,X1 . . . ,Kk ∈X (M) and ω ∈ Ωk+1(M), then,

iXω(X1, . . . , Xk) = ω(X,X1, . . . , Xk). (7.34)
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By convention, we set iXf = 0. If ω is a one-form, iXω = ω(X).

7.1.13 Theorem Let ϕ : M → N be a diffeomorphism. Then,

ϕ∗(iXω) = iϕ∗Xϕ
∗ω. (7.35)

Proof Let {Y = ϕ∗X, Yi = ϕ∗Xi, i = 1 . . . k} ∈X (M). We have

iY ϕ
∗ω(Y1, . . . , Yk) = ϕ∗ω(Y, Y1, . . . , Yk),

= ω(ϕ∗Y, ϕ∗Y1, . . . , ϕ∗XYk),

= ω(X,X1, . . . Xk),

= iXω(X1, . . . , Xk)

iϕ∗Xϕ
∗ω(Y1, . . . , Yk) = ϕ∗iXω(Y1, . . . , Yk),

If ϕi is a local diffeomorphism on M the theorem can be restated as,

ϕ∗t ◦ iX = iϕ∗tX ◦ ϕ
∗
t . (7.36)

7.1.14 Theorem Let iX : Ωk(M)→ Ωk−1(M), be the interior product and
let α ∈ Ωk(M), β ∈ Ωl(M), f ∈ F (M). Then

a) iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ,
b) ifXα = fiXα,

c) iXdf = £Xf = X(f)

Proof The proof of part (a) involves some combinatorics arising from the
definition of the wedge product 2.61. We leave out the somewhat messy details.
Part (b) follows immediately from the multilinearity of α and the definition of
the interior product. Part (c) is trivial. We have iXdf = df(X) = X(f).

The interior product 7.34, the intrinsic exterior derivative 7.17, and the Lie
derivative 7.27 are related by the following formula.

7.1.15 Theorem (H. Cartan)

d ◦ iX + iX ◦ d = £X . (7.37)

Proof The proof is by induction. First, we verify that the formula is true for
zero-form f and a 1-form ω.

(d iX + iXd)f = d iXf + iXdf,

= iXdf,

= df(X) = X(f) = £Xf.
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Let ω be a one form and X,Y ∈X (M).

(d iX + iXd)ω(Y ) = (d (iXω))(Y )) + iX(dω)(Y ),

= d(ω(X))(Y ) + dω(X,Y ),

= Y (ω(X)) +X(ω(y))− Y (ω(X))− ω([X,Y ]),

= X(ω(Y ))− ω(£XY ),

= £Xω(Y ).

Suppose the proposition is true for k-forms ωi. A k + 1-form can be written as
dfi ∧ ωi that for simplicity we write as df ∧ ω. By induction hypothesis,

d iXω + iXdω = £Xω

Using Leibnitz rule, and the properties d ◦ d = 0, iXf = 0, iXdf = £Xf , we
compute,

(d iX + iXd)(df ∧ ω) = d iX(df ∧ ω) + iXd(df ∧ ω)),

= d(iXdf ∧ ω − df ∧ iXω)− iX(df ∧ dω),

= d£Xf ∧ ω + £Xf ∧ dω − (−df ∧ d iXω))

− (iXdf ∧ dω − df ∧ iXdω),

= d£Xf ∧ ω + £Xf ∧ dω −£Xf ∧ dω + df ∧ (d iXω + iX dω)

= £Xdf ∧ ω + df ∧£Xω, (by induction and £X d = d£X),

= £X(df ∧ ω),

which is what we wanted to establish. The diagram in figure 7.3, which is
reminiscent of chain-complexes in singular homology, helps to visualize this
most elegant result, sometimes called Cartan’s magic formula.

Fig. 7.3: Cartan’s Magic Formula

Cartan’s magic formula is useful in establishing the Poincaré lemma. We
recall from example 2.82, that a closed form need not be exact. In more general
spaces, such as spheres, there are topological considerations. In fact, Consider
the de-Rham complex,

. . .
d−−−−→ Ωk−1(M)

d−−−−→ Ωk(M)
d−−−−→ Ωk+1(M) . . . (7.38)

In algebraic topology, a sequence such as this one, for which d ◦ d = 0, is called
a long exact sequence. If one lets Zk(M) be the set of closed k-forms on a
manifold M , and Bk(M) be the set of exact forms, the quotient

Hk(M) = Zk(M)/Bk(M)
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is called the k-th cohomology group Hk(M) of that space. Two closed k-forms
ω and ω′ are in the same cohomology class if their difference is exact; that is,
there exists a (k − 1)-form φ, such that

ω′ = ω + dφ

The de-Rham cohomology groups have deep connections to the topology of the
space. A key topological concept we need is that of a homotopy which we define
as follows

7.1.16 Definition Lef M ′ and M be smooth manifolds. Two smooth maps
f, g : M ′ →M are called homotopic if there exists a map φ : M ′ × [0, 1]→M ,
such that

a) φ(p′, 0) = f(p),

b) φ(p′, 1) = g(p).

If we let φt(p
′) = φ(p′, t), t ∈ [0, 1] then the homotopy describes a smooth

deformation of g = φ1 to f = φ0. A manifold M is contractible, to a point
p0 ∈M , if there exists a homotopy

φ : M × [0, 1]→M

for which φ1(p) = g(p) = p is the identity map, and φ0(p) = f(p) = p0 is the
constant map.

7.1.17 Poincaré Lemma

If M is a manifold which is smoothly contractible to a point, a closed form ω
is exact.

Proof We present a proof in the special case in which the manifold is a ball
Bn ∈ Rn+1 centered at the origin. This is the alternative proof that appears
in Abraham-Marsden [20]. For all p ∈ Bn, and 0 < t ≤ 1, let φt be the
one-parameter group of diffeomorphisms defined by φt(p) = tp. This kind of
homotopy map is an example of a deformation retract. When t = 1, the map
is the identity map and as t→ 0, the ball continuously shrinks to a point. Let
Xt be the vector field Xt(p) = p/t. We have,

d

dt
φt(p) = Xt(φ(p)) = p,

so Xt is the tangent vector field of the one-parameter family of curves. Let ω
be a closed k-form in Bn. By the definition of the Lie derivative and Cartan’s
magic formula 7.37, we have

d

dt
(φ∗tω) = φ∗t (£Xtω),

= φ∗t (diXtω + iXtdω),

= φ∗t (diXtω),
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Integrating from a small value ε > 0 to 1, we get,

φ∗tω|1ε =

∫ 1

ε

φ∗t (diXtω) dt,

= d

∫ 1

ε

φ∗t (iXtω) dt,

Taking the limit as ε → 0 and recalling that at t = 1, φt is the identity map,
we get

ω = dβ, β =

∫ 1

0

φ∗t (iXtω) dt. (7.39)

Although the theorem is proved, it is helpful to find a more explicit formula for
the (k − 1)-form β, using the definitions of the push-forward and the interior
product. Let {ei, . . . , ek−1} be part of a set of basis vectors and p the position
vector at the point p. Then

βp(e1, . . . , ek−1) =

∫ 1

0

φ∗t ipω(ei, . . . ek−1) dt,

=

∫ 1

0

ωφ(p)(p, φ∗ei . . . , φ∗ek−1) dt,

=

∫ 1

0

ωtp(p, te1, . . . , tek−1) dt,

so,

βp =

∫ 1

0

tk−1ωtp(p, e1, . . . ek−1) dt. (7.40)

The more general theorem is computationally more complicated, but the idea is
essentially the same. There is a natural one parameter group of diffeomorphisms
φt : M × [0, 1] such that φ1 is the identity and φ0 is a constant map. One then
seeks a linear map h : Ωk → Ωk−1 such that 1,

φ∗1ω − φ∗0ω = d(hω) + h(dω). (7.41)

This property can be represented by the diagram 7.4 which is an example
of a chain homotopy. The linear map we seek can be obtained by defining
hω(p) = βp. By choice of the homotopy map, the left-hand-side of equation
7.41 is the identity map on forms. By a direct, but non-trivial computation
(see [20], [34]), one can verify that the right-hand-side of equation is also equal
to ω. Thus, if dω = 0 we have

ω = d(hω)

which is what we wanted to establish.
This general form of the theorem is rough for the novice. In Abraham-

Marsden, the form hω = β just pops out of nowhere, so without the alternative

1It is common to index the maps with the order of the forms. For example, one would
write hk : Ωk → Ωk−1, and dk : Ωk → Ωk+1.
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Fig. 7.4: Chain Homotopy

proof, the whole process appears rather mysterious. Spivak provides some mo-
tivation for finding hω by first treating the case where ω is a one form. In his
book Calculus on Manifolds he carries out the full computation when M is a
star-shaped region in Rn. Either way, the computation is more difficult. The
Poincaré lemma is often stated by saying that in a manifold M , a closed form
is locally exact; that is, given a closed form on an open set U ⊂ M , then for
each point p ∈ U , there exists a ball B ⊂ M centered at p in which the form
is exact. Perhaps an explicit construction of the form hω in R3 might help
the reader understand the nature of the constructive proof. Let B be a vector
field with ∇ ·B = 0 and p = (x, y, x). We seek a vector potential A, such that
∇×A = B. Write p as a tangent vector p = xk∂k, and map B into the 2-form

ω = B1(p) dx2 ∧ dx3 −B2(p) dx1 ∧ dx3 +B3(p) dx1 ∧ dx2.

The components of the 1-form α = A′k dx
k constructed in the proof of the

Poincaré lemma are

A′i = hω(p)(∂xi),

=

∫ 1

0

tωtp(x
k∂k, ∂i) dt,

=

∫ 1

0

t[B1(tp) dx2 ∧ dx3 −B2(tp) dx1 ∧ dx3 +B3(tp) dx1 ∧ dx2](xk∂k, ∂i) dt.

Since dxk(∂i) = δki , we get

A′1 =

∫ 1

0

t[x3B2(tp)− x2B3(tp)] dt,

A′2 =

∫ 1

0

t[x1B3(tp)− x3B1(tp)] dt,

A′3 =

∫ 1

0

t[x2B1(tp)− x1B2(tp)] dt,

For an example let B = (y,−z2,−x) and see if we can recover the vector
potential A = (xy,−yz, xz2) which we used secretly to produce the field. The
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computation yields

A′1 =

∫ 1

0

[tz(−t2z2)− ty(−tx)] dt = − 1
4z

3 + 1
3xy,

A′2 =

∫ 1

0

[ty(ty)− tx(−t2z2)] dt = − 1
3y

2 + 1
4xx

2,

A′3 =

∫ 1

0

[ty(ty)− tx(−t2z2)] dt = 1
3y

2 + 1
4xz

2.

One can easily verify the curl of the resulting vector potential

A′ = (− 1
4z

3 + 1
3xy,−

1
3y

2 + 1
4xx

2, 1
3y

2 + 1
4xz

2)

does indeed give the same field B, but we failed to recover the original potential.
On the other hand, the difference

A−A′ = ∇f, where f = 1
3x

2y + 1
4xz

3 − 1
3z

2z,

so the two potentials are cohomologous, as expected. This academic example
shows the cleverness of the definition of hω but it also squelches the hope of
an easy way out of solving Maxwell equations for magnetic fields. To obtain
the vector potentials in the right gauge on problems of physical significance,
students are much better off reading the Feynman Lectures on Physics.

7.1.18 Theorem

[£X , iY ] ≡ £X ◦ iY − iY ◦£X = i[X,Y ], (7.42)

[£X ,£Y ] ≡ £X ◦£Y −£Y ◦£X = £[X,Y ]. (7.43)

Proof Let ω be a k-form and Y,X,X1, . . . , Xk−1 be vector fields. The proof
is by direct computation using the formula for Lie derivatives 7.27 and the
definition of the interior product 7.34.

(iY £Xω)(X1, . . . , Xk−1)

= (£Xω)(Y,X1, . . . , Xk−1),

= £X(ω(Y,X1, . . . , Xk−1))−
k−1∑
i=1

ω(Y,X1, . . . , [X,Xi], . . . Xk−1)

− ω([X,Y ], X1, . . . xk−1), (term not included in sum)

= £X iY (X1, . . . , Xk−1) +

k−1∑
i=1

iY (X1, . . . , [X,Xi], . . . Xk−1)

− i[X,Y ](X1, . . . , Xk−1),

= (£X iY − i[X,Y ])ω(X1, . . . , Xk−1).

We leave the second part as an exercise, using the formula of Cartan 7.37.
A direct consequence of equations 7.43 is that if X and Y are Killing vector

fields in a Riemannian manifold {M, g}, so that £Xg = £Y g = 0, then [X,Y ]
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is also a Killing vector field. Thus, the set of Killing vector fields forms a Lie
subalgebra of the Lie algebra of vector fields, in the sense described in the
section that follows.

7.2 Lie Algebras

7.2.1 Definition A vector space g over a field F (here, F = R or C) is
called a Lie algebra if there exists an operation [ , ] : g× g→ g (called the Lie
Bracket), such that,

a) [ , ] is F -bilinear,
b) [X,Y ] = −[Y,X], for all X,Y ∈ g,
c) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X.Y ]] = 0, Jacobi identity

7.2.2 Definition A Lie subalgebra h of a Lie algebra g is a subspace that is
closed under the Lie Bracket.

7.2.3 Theorem The vector space X (M) together with the operation £XY =
[X,Y ] gives the space the structure of a Lie Algebra.
The Jacobi identity follows directly from equation 7.43 applied to vector fields,
but a much more elementary proof follows directly from the definition of the
bracket of two vector fields and the property of vector fields being linear deriva-
tions on the space of functions. The details of the proof have already appeared
in theorem 4.4.2.

Lie subalgebras are intricately connected with the theory of submanifolds
N ⊂ M . They can be used to generalized the idea of integral curves. Let
M be an n dimensional manifold, and p be a point p ∈ M . A k-dimensional
distribution at p is a subset Dp ⊂ TpM . Let {X1, X2, . . . , Xk} be a set of
linearly independent vector fields in a neighborhood U of p which constitutes a
basis for Dq, q ∈ U . If these can be chosen in a smooth way, D is called a C∞

distribution.

7.2.4 Definition Let {X1, X2, . . . , Xk} | p ∈ U} span a distribution D. The
distribution is integrable if the vectors form a subalgebra of the Lie algebra of
vectors fields in M . That is, there exist C∞ functions Clij , such that

[Xi, Xj ] = CkijXk.

7.2.5 Definition A distribution D arises from a foliation of M , if for each
point p ∈M , there exists a k-dimensional local submanifold N of M , containing
p with

i∗(TpN) = Dp, for al p ∈ U
where i : N →M is the inclusion map.

Locally, foliations look like layers of local submanifolds, called the leaves
of the foliation. Perhaps the most famous foliation is the Reeb foliation of S3
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that locally looks like onion layers formed a sock pushed infinitely into itself. A
standard method to treat the field equations in general relativity is to think of a
4-dimensional Lorentzian manifold as a 3+1 manifold, foliated by 3-dimensional
spatial surfaces evolving in time.

The main result on distributions is,

7.2.6 Theorem (Frobenius) A distribution D is integrable if and only if, it
arises from a foliation.

An alternative formulation of the Frobenius integrability theorem can be stated
in terms of differential forms. Let Ω∗(M) be the graded ring on smooth differ-
ential forms. The subring I(D) of all the forms ω that annihilate D, namely,
for all X1, . . . Xk in D

ω(X1, . . . Xk) = 0, (7.44)

generate an ideal I(D). If {e1, . . . , ek} is an orthonormal frame in D, then
the dual forms {θ1, . . . , θk} span I(D). The differential forms version of the
Frobenius says that D is integrable if for every ω ∈ I(D), we have dω ∈
I(D); that is, the differential ideal is closed under exterior derivatives. More
specifically, there exist forms αjk, such that

dθj = αjk ∧ θk ∈ I(D).

The connection between the two versions of the theorem is achieved through
the structure constant formula,

dθi =
1

2
Cijkθ

j ∧ θK

which we prove in equation 7.67.
If we extend the orthonormal frame spanning D to an orthonormal frame

{e1, . . . , ek, ek+1, . . . , en}, with dual forms {θ1, . . . , θk, θk+1, . . . , θn} then the
integral submanifolds are defined by the (Pfaffian) system,

θm = 0, m = k + 1, . . . n.

The theorem guarantees the existence of local coordinates {x1, . . . , xn} about
p ∈ U , with tangent vectors {∂/∂x1, . . . ∂/∂xk}|p spanning Dp, and with the
dual forms

{dxk+1, . . . , dxn}|p
annihilating D. The forms {θk+1, . . . , θn} can then be written as linear combi-
nations of the coordinate one-forms above. The sets

Np = {xk+1|p = ak+1, . . . , xn|p = an},

where the a’s are constants, are integral submanifolds of the distribution Dp.

We do not present a proof of this very important theorem in this rather
perfunctory treatment of the topic. Instead, we refer the reader to classic text-
books such as [20] or [34]. The theorem is the starting point to the deep subject
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of Lie groups of symmetries of partial differential equations and prolongation
theory.

Given any Lie group G, we can construct an associated Lie algebra g. Given
a group element g ∈ G, we define the left and the right translation maps Lg, Rg :
G→ G by,

Lg(g0) = gg0, (7.45)

Rg(g0) = g0g, for all g0 ∈ G. (7.46)

Hereafter, for every statement we make about left translation, there is a corre-
sponding statement about right translation. The map Lg is a diffeomorphism
with inverse given by (Lg)

−1 = Lg−1 .

Fig. 7.5: Left Invariant Vector Field.

7.2.7 Definition A vector field X ∈ X (G) is called left invariant if for all
g ∈ G, we have,

Lg∗X = X. (7.47)

More specifically, if Xg
0

is the tangent vector at g0, then,

Lg∗Xg
0

= XLg(g0 ) = Xgg
0
,

is the tangent vector at gg0.

7.2.8 Definition Let g = L(G) be the set of all left-invariant vector fields
in G. Then g has the structure of a Lie algebra.
Proof Let X,Y ∈ g. Then by equation 7.25 we have,

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ],

= [X,Y ],

so [X,Y ] ∈ g. Thus, the set of left-invariant vector fields is closed under Lie
brackets and hence it is a Lie subalgebra of the Lie algebra of all vector fields
X (G).

Let TeG be the tangent space at the identity of a Lie Group. For every
tangent vector Xe ∈ TeG we can generate a vector field X by simply defining
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the value of the vector field at any point g ∈ G, to be the tangent vector,

Xg = Lg∗Xe. (7.48)

The vector field X so defined is almost tautologically left invariant. Indeed, if
g0 ∈ G,

Lg∗Xg
0

= Lg∗(Lg
0
∗)Xe,

= L(gg
0
)∗Xe

For each left invariant vector field X with value Xg, there is a unique tangent
vector Xe = L(g−1)∗Xg at the identity, so we have the following theorem,

7.2.9 Theorem The tangent vector space at the identity TeG of a lie group
is isomorphic to the Lie algebra of left-invariant vector fields g = L(G). The
isomorphism is obtained by assigning to any left-invariant vector field, its value
at the identity.

We now consider the behavior of left invariant vector fields under mappings.
Let φ : G → H be a homomorphism between two Lie groups G and H with
identity elements e and e′ respectively, and push-forward map φ∗ : TeG→ Te′H.
Consider a tangent vector Xe ∈ TeG generating a left invariant vector field X.

Fig. 7.6: Lie Algebra Homomorphism

So, if g ∈ G, then Lg∗X = X. Denote by Y the left invariant vector field in H
whose value at the identity is Ye′ = φ∗Xe. As shown in figure 7.6, we have,

φ ◦ Lg = Lφ(g) ◦ φ.

Then, for the push-forward of the vector field X at g, we have,

φ∗Xg = φ∗Lg∗Xe,

= (φ ◦ Lg)∗Xe,

= (Lφ(g) ◦ φ)∗Xe,

= Lφg∗φ∗Xe,

= Lφg∗Ye′ ,

= Yφ(g).
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Therefore, the push-forward of a left-invariant vector field X is a left-invariant
vector field Y . Since the push-forward preserves brackets, the map φ∗ is a Lie
algebra homomorphism, that is,

φ∗(aX
1 + bX2) = aφ∗X

1 + bφ∗X
2,

φ∗[X
1, X2] = [φ∗X

1, φ∗X
2]. (7.49)

7.2.1 The Exponential Map

Let φ : R→ G be a smooth Lie group homomorphism, and let A = φ′(0) ∈
TeG be a tangent vector at the identity. Such homomorphism is called a one-
parameter subgroup of G. Let G = GL(n,R). Consider the case where G =
GL(n,R). This is a matrix group, so a tangent vector at the identity is a
matrix; this is the reason why we changed the notation from X to A. Since

φ(s+ t) = φ(s) ◦ φ(t),

evaluating the derivative at s = 0 gives,

d

dt
φ(t) = φ′(0) · φ(t),

= Aφ(t), with,

φ(0) = I. (7.50)

Here, the dot is matrix multiplication. By analogy to the one-dimensional case,
the solution of this differential equation is,

φ(t) = eAt, (7.51)

where the exponential of a matrix is defined as the power series,

eA = 1 +A+
A2

2!
+
A3

3!
+ . . .+

An

n!
+ . . . .. (7.52)

We see that the one-parameter family of matrices φ(t) = eAt is the integral
curve of the vector A. This leads to the following definition,

7.2.10 Definition For any Lie group G, we define the exponential map

exp : g→ G (7.53)

as follows. Let A ∈ TeG, and let φ : R→ G be the unique homomorphism such
that φ′(0) = A. Then,

exp(A) ≡ eA = φ(1)

Clearly,

e(s+t)A = esAetA,

e−tA = (etA)−1
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The map t 7→ etA is a local diffeomorphism from TeG to G. The maximal
extension of the integral curve is the one-parameter subgroup of G indicated at
the beginning of this subsection. The converse is also true. Any one-parameter
subgroup of G is generated by a map t 7→ etA, for some A ∈ TeG. Since
g ∼= L(G), there is a one-to-one correspondence between the Lie algebra of a
Lie group and the one-parameter subgroups. Roughly speaking, the exponential
map yields a neighborhood of e ∈ G, which is filled by one-parameter subgroups
emanating from e by the integral curves of tangent vectors A ∈ TeG. In fact
if the diagram in figure 7.6 and the result in equation 7.49 are applied to the
homomorphism φ : R→ T with the condition that,

φ∗(
d
dt |0) = A,

then φ is a Lie algebra homomorphism. The left-invariant vector field generated
by A is the vector field tangent to the unique integral curve given by the map
t 7→ etA. We define,

ln(eA) = A, eln(1+A) = 1 +A,

wherever the formal power series converges. If A and B are two matrices near
0, we can study the behavior of

ln(eAeB) = ln[(1 +A+
A2

2!
+ . . . )(1 +B +

B2

2!
+ . . . )].

If we only retain the first order terms, we get,

ln(eAeB)
.
= ln(1 +A+B) = A+B.

If we wish to compute the quadratic terms, we formally multiply the power series
for the exponentials, and then use the formal series expansion for ln(1 +X) =
X − 1

2X
2 + . . . . However we need to be careful with the fact that matrix

multiplication does not commute. The result is,

ln(eAeB) = ln

(
1 +A+B +

A2

2
+AB +

B2

2
+ ...

)
,

=

(
A+B +

A2

2
+AB +

B2

2

)
− 1

2

(
A+B +

A2

2
+AB +

B2

2

)2

+ . . .

= A+B +
A2

2
+AB +

B2

2
− 1

2
(A+B + . . . )2 + . . . ,

= A+B +
1

2
[A,B] + . . . .

The full expansion is called the Campbell-Baker-Hausdorff (CBH) formula. The
terms up to third order are,

ln(eAeB) = A+B +
1

2
[A,B] +

1

12
[A, [A,B]− 1

12
[B, [A,B]] + . . . (7.54)

All the terms of order two or higher are expressible in terms of brackets, so

[A,B] = 0,⇒ eAeB = eA+B .
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Exponentiating the CBH formula 7.54 and keeping only the terms up to order
2, we can establish the following formulas,

7.2.11 Theorem

etAetB = exp
{
t(A+B) + 1

2 t
2[A,B] + O(t3)

}
,

e−tAe−tBetAetB = exp
{
t2[A,B] + O(t3)

}
,

etAetBe−tA = exp
{
tB + t2[A,B] + O(t3)

}
. (7.55)

The first of these formulas follows immediately from the CBH formula. The
other two require more manipulation of exponential and logarithmic expansions
along the same lines as in the computations leading to 7.54. A complete proof
of the this theorem can be found in [34]. Next, we prove that the exponential
map is natural with respect to the push-forward.

7.2.12 Theorem Let φ : G→ H be a smooth homomorphism between two
Lie groups G and H. Then the exponential loop in following diagram commutes,

That is,

φ ◦ exp = exp ◦φ∗. (7.56)

Proof Let A ∈ TeG and let α : R → G be a one parameter subgroup of G
given by α(t) = etA. Then, A = α′(0) = α∗(

d
dt |0). Define ψ : R → H by the

composition ψ = φ ◦ α. That is,

ψ(t) = φ(etA).

We have,

φ(s+ t) = φ(e(s+t)A),

= φ(esAetA),

= φ(esA)φ(etA),

= φ(s)φ(t),

so φ is a one parameter subgroup of H. The rest of the proof amounts to un-
tangling the definition of the push-forward as shown in equation 1.25. Suppose
that B ∈ Te′H such that ψ(t) = etB . That means that B = ψ′(0). We consider
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the action of this tangent vector on an arbitrary smooth function f : H → R.
We have,

B(f) = ψ′(0)(f) = ψ∗
d
dt (f)|0,

= d
dt (f ◦ ψ)|0,

= d
dt (f ◦ φ ◦ α)|0,

= α′(0)(f ◦ φ) = A(f ◦ φ),

= φ∗A(f).

We conclude that B = φ∗A. Thus, setting t = 1, ψ(t) = etB can be rewritten

φ(eA) = eφ∗A, or φ(exp(A)) = exp(φ∗A)

which is what we wanted to prove.

7.2.2 The Adjoint Map

7.2.13 Definition Let G be a Lie group and let g0 ∈ G. For each g ∈ G,
consider the conjugation automorphism Cg = LgR

−1
g : G → G given by g0 7→

gg
0
g−1 = LgR

−1
g (g0). We define the adjoint map Adg : g → g by the linear

transformation,
Adg = Cg∗ = (LgR

−1
g )∗. (7.57)

7.2.14 Definition Denote by Aut(V ) automorphism group of all invertible
linear transformations of some vector space V over R (or C). If V has dimension
n, then Aut(V ) is isomorphic to the matrix group GL(n,R). A homomorphism,

φ : G→ GL(n,R)

from a Lie group to GL(n,R) is called a (real) representation of order n. If the
homomorphism is 1-1, the representation is called faithful. If W is subspace of
V , and φ(g)v ∈ W for all v ∈ W and g ∈ G, we say that W is an invariant
subspace. A representation with no non-trivial invariant subspace is called ir-
reducible. Same idea applies to Lie algebras. Since Adgg′ = Adg ◦ Adg′ , the
adjoint is a homomorphism, Ad : G → Aut(g) is called the adjoint representa-
tion. The kernel is the center of the group G.

By equation 7.56, if X ∈ g we have exp(C∗X) = C(exp(X)), that is

eAdg(X) = g(eX)g−1. (7.58)

Consider the case G = GL(n,R). We evaluate the adjoint on a one-parameter
subgroup of G. Let Y ∈ g = gl(n,R) and t 7→ etY be one such one parameter
subgroup. Then for a matrix g ∈ GL(n,R), the conjugation map gives

Cg(e
tY ) = getY g−1.
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Taking the derivative with respect to t and evaluating at t = 0, we get

Adg(Y ) = gY g−1. (7.59)

Now, we evaluate along the derivative of the adjoint map at t = 0, along another
one-parameter subgroup t 7→ etX ,

AdetXY = etXY e−tX ,

= (1 + tX + 1
2! t

2X2 + . . . )Y (1− tX + 1
2! t

2X2 + . . . ),

= 1 + t[X,Y ] + O(t2),

d

dt
AdetxY |t=0 = [X,Y ]

We denote the quantity on the left hand side above by the notation adXY

adXY = [X,Y ]. (7.60)

Equivalently, adX ∈ End(g) is an endomorphism given by the map Y 7→ [X,Y ].
The reemergence of the of an operator yielding the Lie bracket is indicative that
there is a Lie derivative floating around. The details are easy to clarify. The
map ϕ(t) = g(t) = etX is a local diffeomorphism generated by the flow of
X ∈ TeG. The Lie derivative of a vector field Y is given by

£XpT =
d

dt
(ϕ−1
t )∗Y

∣∣∣∣
t=0

.

The push-forward of the conjugation map Cg = R−1
g Lg action on Y gives,

Adg(t)(Y ) = (R−1
g )∗Lg∗Y

= (R−1
g )∗Y, sinceY is left invariant,

AdetXY = (R−1
g )∗Y,

d

dt
AdetXY |t=0 =

d

dt
(R−1

g )∗Y |t=0,

which gives,

adXY = £XY.

We conclude that,

AdexpX = exp(adX),

AdeX = eadX = 1 + adX + 1
2! (adX)2 + . . . , (7.61)

where the first term represents of course the identity element in the algebra.
If the Lie algebra is finite dimensional, we can define the Killing form as the
form B given by,

B(X,Y ) = Tr(adX ◦ adY ) = Tr(adXadY ). (7.62)
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The Killing form is not a differential form, but rather, a symmetric bilinear
entity that plays the role of a metric in the Lie algebra. In the adjoint repre-
sentation, the Killing form is adjoint invariant, meaning,

B(adXY, Z) +B(Y, adXZ) = 0

In terms of adX , the Jacobi identity in definition 7.2 becomes,

[adX , adY ]Z = ad[X,Y ]Z, (7.63)

which shows explicitly that ad is a Lie algebra homomorphism.

The adjoint map can be used to prove an interesting formulation of the CBH
formula first proved in 1899 by Poincaré [13]. Let,

β(w) =
w

1− e−w
=

∞∑
n=0

B+
n w

n

n!

be the generating function for the Bernoulli numbers. Define,

g(z) = β(ln z) =
z ln z

z − 1
.

Then, the Campbell-Baker-Hausdorff formula can be written in the form,

ln(eAeB) = A+

∫ 1

0

g(eadAet adB )B dt. (7.64)

The formula is complicated to use for explicit evaluation of the terms in the
expansion, but nonetheless is a neat result because it makes it manifestly clear
that the expansion depends only on the brackets. Following Hall [13], we illus-
trate how to get the first three terms. Set z = v + 1 and expand g(v + 1) in a
Maclaurin series,

g(v + 1) =
v + 1

v
ln(v + 1),

=
v + 1

v
(v − 1

2v
2 + 1

3v
3 + . . .),

= (v + 1)(1− 1
2v + 1

3v
2 + . . .),

= 1 + 1
2v −

1
6v

2 + . . . .

Next, we set eadAet adB − 1 = v and evaluate g up to second order in adA, adB .
We ignore terms that contain B on the right of adB , since adBB = 0.

v = [I + adA + 1
2 (adA)2 + . . . ][I + t adB + 1

2 t
2(adB)2 + . . .]− I,

= adA + 1
2 (adA)2 + t adB + 1

2 t
2(adB)2 + . . . ,

v2 = (adA)2 + t adA adB + . . . ,

g(v + 1) = I + 1
2

(
adA + 1

2 (adA)2
)
− 1

6

(
(adA)2 + t adB adA

)
+ . . . .∫ 1

0

g(v + 1) dt = I + 1
2adA + 1

12 (adA)2 − 1
12adB adA + . . .
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Hence,

ln(eAeB) = A+B + 1
2 [A,B] + 1

12 [A, [A,B]]− 1
12 [B, [A,B]] + . . .

7.2.3 The Maurer-Cartan Form

Let G be a Lie group. A differential form θ in G is called left-invariant if

L∗gθ = θ. (7.65)

That is, if the form at point g
0

is given by θg0 , then,

L∗gθg0 = θg−1g
0
.

The vector space g∗ of left-invariant one forms is the dual space of the Lie
algebra of g left-invariant vector fields. Recall that the Lie algebra of left-
invariant vector fields is isomorphic to the tangent space at the identity TeG.
If X is a left-invariant vector field and θ is a left invariant one-form the θ(X)
is constant. If θ is left invariant, then for each g ∈ G

L∗g(dθ) = d(L∗gθ) = dθ,

so dθ is also left-invariant. The canonical form or Maurer-Cartan form of G is
the form ω is the form that assigns to a left-invariant vector field, its value at
the identity, that is,

ω(Xg) = Lg−1∗Xg, or equivalently,

ω(X) = X, for all X ∈ TeG.

The Maurer-Cartan form ω is left-invariant. On the other hand (the right), we
have,

7.2.15 Theorem

R∗gω = Adg−1ω. (7.66)

Proof Let X ∈ g generate a left invariant vector field in G via the flow of the
exponential map X 7→ etX . Let g

0
∈ G. By definition, ωg

0
(Xg

0
) = X. Then

(R∗gωg0 )(Xg
0
) = ωg

0
g(Rg∗Xg

0
),

=
d

dt
[ωg0g(pe

tXg)]t=0,

=
d

dt
[(g

0
g)−1(g

0
etXg)]t=0,

=
d

dt
[g−1etXg]t=0,

= Adg−1X,

= Adg−1ωg0 (Xg0
)
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Suppose {eα} is a basis for the Lie algebra of left-invariant vector fields g.
The bracket of two vectors in the Lie algebra must be expressible as a linear
combination of the basis vectors, so there exist constants Cγαβ such that

[eα, eβ ] = Cγαβeγ . (7.67)

The quantities Cγαβ are called the structure constants. Since [eα, eβ ] = −[eβ , eα],
the structure constants are antisymmetric on the lower indices. The frame
{eα} is called a Maurer-Cartan frame. Let {ωα} be the dual basis, so that
ωα(eβ) = δαβ . By definition, applying the Maurer-Cartan form to eα returns
the value of eα at the identity. This gives an almost tautological expression
for the components of the Maurer-Cartan form in terms of the Maurer-Cartan
coframe,

ω = eα(e)⊗ ωα.

Applying the definition for the differential of a one-form 6.28,

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

we get,

dωα(eβ , eγ) = eβ(ωα(eγ))− eγ(ωα(eβ))− ωα([eβ , eγ ]),

= eβ(δαγ )− eγ(δαβ )− Cγαβωα(eγ),

= −Cαβγ .

Using the antisymmetry of the wedge product and the antisymmetry of the
structure constants in the lower indices, we can rewrite the last equation as,

dωα = −1

2
Cαβγω

β ∧ ωγ . (7.68)

This equation of structure is called the Maurer-Cartan equation. Let X,Y
be left-invariant. Since ω(X) and ω(Y ) are constant, we have X(ω(Y )) =
Y (ω(X)) = 0, so using the definition 6.28 for the differential of a one form, we
can also write the Maurer-Cartan equation as

dω(X,Y ) = −ω([X,Y ]). (7.69)

There is an annoying factor of 1/2 which makes the notation inconsistent in the
literature. Some authors include such a factor in the equation of structure 7.69,
but typically those authors also include a 1/2 their definition of the differential
of a one form dω(X,Y ). Other authors restrict the sum in equation 7.68 to
values i < j, so the factor 1/2 does not appear there. Yet some others avoid the
bracket notation altogether, or they invent a new hybrid wedge/bracket [ω, ω] of
forms that may account for the 1/2. In this latter case, the 2-form represented
by the wedge/bracket2 is usually interpreted as a section of Λ2 ⊗ g⊗ g.

2If α, β ∈ Ω1 ⊗ g are Lie algebra valued one-forms, the usual definition of the bracket is
[α, β](X,Y ) = [α(X), β(Y )]− [α(Y ), β(X)]. Thus [α, α](X,Y ) = 2[α(X), α(Y )].
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If G is a matrix group, real or complex, the Maurer-Cartan form 3.41 can be
written as 3,

ω = A−1dA, (7.70)

where, g = A ∈ G plays the role of the attitude matrix introduced in section 3.4.
The form ω = g−1dg is clearly left-invariant, because if g0 is another constant
matrix, then

(g
0
g)d(g

0
g) = g−1dg.

We can express the components of the Killing form in terms of the structure
constants. First, we compute

(adeαadeβ )eγ = adeα([eβ , eγ ]),

= [eα, [eβ , eγ ]],

= [eα, C
σ
βγeσ],

= CρασC
σ
βγeρ.

Taking the trace means we perform a contraction with the dual form ωγ which
is the same as setting γ = ρ on the coefficients on the right. We get

Bαβ = CρασC
σ
βρ. (7.71)

Notice that the components of the Killing form result from the contraction of
the antisymmetric indices of the structure constants; this yields the simplest
symmetric tensor that can be constructed from the structure constants. Cartan
used the Killing form to characterize an important attribute of Lie algebras
called semisimple. A non-Abelian Lie algebra is simple if it has no, non-trivial
proper ideals. A semisimple Lie algebra can be decomposed as the direct sum
of simple Lie algebras. The Cartan criterion states states that the Lie algebra
is semisimple if and only if the Killing form is non-degenerate. Of course, the
structure constants depend on the choice of the basis. But, since the form is
symmetric, it can be diagonalized by an orthogonal matrix, so it can be classified
by the eigenvalues. If the Lie group is compact and semisimple, the Killing form
is positive definite and in diagonal form, all the entries are positive. The most
salient achievement of E. Cartan was to provide a complete classification of
semisimple Lie algebras. Included in this classification are all the Lie algebras
associated with the special Lie groups mentioned above in this chapter.

It is also easy to express the adjoint representation in terms of the structure
constants. All is really needed is to define matrices Tα whose components are,

[Tα]γσ = Cγασ.

We then get yet another manifestation of the Jacobi identity 7.2 in the form,

[Tα, Tβ ] = CγαβTγ . (7.72)

This is the component version of equation 7.63, and it shows that the structure
constants themselves, generate the adjoint representation.

3For a matrix group, ω(Xg) = Lg−1∗(Xg) = dL−1
g (Xg). So, the logarithmic differential

maps the vector field Xg to its value at the identity e.
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7.2.4 Cartan Subalgebra

To get at the physics applications of Lie algebras we need to dip our toes
into representation theory. Actually, what we should say is that it is the physics
that lead to the development of representation theory by giants like Cartan and
Weyl.

7.2.16 Definition A Cartan subalgebra h ∈ g is a nilpotent subalgebra that
is its own normalizer. The dimension of the Cartan subalgebra is called the
rank of g.

Every pair of elements of h commute, and every element of g that com-
mutes with all elements of h is in h. In this sense, a Cartan subalgebra is the
maximum number of commuting generators of the Lie algebra. The idea is to
simultaneously diagonalize the basis of h. The eigenvalues are used to label the
states of the system.

Using the Killing form, one finds an orthonormal basis {hi} for h and extends
to a basis of g

{h1, h2 . . . , hk, , g1, g−1, g2, g−2, . . . , gn−k
2

, g
−n−k2

}

with the following properties:

1. [h1, hj ] = 0.

2. [h, g] = λ(h)g for all h ∈ h and 0 6= g ∈ g. Or, in terms of the basis,

[hi, gj ] = λ
(j)
i gj ,

3. [gj , g−j ] ∈ h.

The first property is a re-statement that each pair basis vectors in h commute.
The second property is a kind of generalized eigenvector equation for adh. For

each gj we associate a position vector r(j) = (λ
(j)
1 , λ

(j)
2 , . . . λ

(j)
k ). These are

called the roots and the set of all roots is called the root space. The plot of the
root vectors in Rk is a set of arrows that exhibits certain reflection symmetries;
the set is called the root diagram. Root spaces lead to Cartan’s classification of
semisimple Lie algebras. The classification can also be visualized by a scheme
called Dynkin diagrams. The basis elements gj and g−j are called the raising
and lowering operators. We will show in the next chapter how this abstract
machinery, leads to real concrete results in physics. Lie symmetries of physical
systems are interconnected with the deep subject of representation theory.

7.3 Transformation Groups

The importance of this chapter for the purpose of applications to physics
is that in many physical models, Lie groups are manifested as transformation
groups that act on the system. In the simplest case we have linear transfor-
mations in Rn which in a particular basis, can be represented by matrix mul-
tiplication of an element of the general linear group GL(n,R) with a vector.
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The group of rotations in R3 constitutes a symmetry group in the dynamical
system of rigid body motion, and the Lorentz group is the essential symmetry
group of space-time. The Lie algebra of a Lie group is basically a first order
symmetry approximation. If one thinks of Lie group such as the rotation group
as a symmetry group acting on a manifold, then an element of the Lie algebra
represents an infinitesimal transformation near the identity of the group. Bases
vectors of the Lie algebras of the corresponding Lie group transformation are
then interpreted as generators of infinitesimal transformations. The exponen-
tial map provides a bridge between full elements of the group and infinitesimal
transformations represented by elements of the Lie algebra and elements of the
Lie group. The Lie algebra is determined by the structure constants and the
Maurer-Cartan equations.

7.3.1 Definition Let M be an n-dimensional manifold and G a Lie group.
G is called a Lie transformation group on (the right of) M , if there exists a
smooth map µ : M ×G→M

(p, g)
µ−→ p · g = Rg(p), for (p, g) ∈M ×G,

such that for each p ∈M ,
1) p · e = p
2) (p · g1) · (g2) = p · (g1 · g2), for every g1, g2 ∈ G.

Of course, a one-parameter group of diffeomorphisms in the sense of definition
7.1.1, is a special case of a Lie transformation group, with G = R. Another
example would be the action of the rotation group SO(3,R) on a sphere S2.
We are often interested in linear representations of the group acting on some
vector space, in which the action respects the linear structure. An example of
this, would be adjoint representation of the action of a Lie group into itself.

7.3.2 Definition Let G be a transformation group on M with identity e,
and let p ∈M be any point in the manifold. We say the transformation is,

1. Effective, if the Kernel K = {g ∈ G : p · g = p} = {e}. In other words, if
g 6= e, there exists a point p, such that p · g 6= p. The Kernel of a group
is a normal subgroup. If the Kernel is not trivial, the action of G on M
is not effective, but the action of G/K is.

2. Free, if g 6= e, then p·g 6= p. In other words, if g 6= e, then there is no fixed
point for g. If there is a fixed point p, we define the isotropy subgroup of
p as, Iso(p) = {g ∈ G : p · g = p}.

3. Transitive, if p 6= q, then there exists a g such that p · g = q. The set of
all q such that p · g = p for some g, is called the orbit of the point p, and
it is denoted by Gp. The map p 7→ Gp which sends p to p · g defines a

diffeomorphism G/Iso(p)
∼=−→ Gp.

Unless otherwise stated, we assume that when we say that a Lie group
acts on a manifold, the action is on the right, and the action is transitive and
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effective. Let X be an element of the Lie algebra g of a Lie group G acting on
M , and let p ∈M . The one-parameter subgroup given by the exponential map

X 7→ etX

generates a curve on M given by

ϕt(p) = p etX = RetX (p), (7.73)

with ϕ0(p) = p with tangent vector X∗ = σ(X) at p given by,

σ(X)|p =
d

dt
(p etX)|t=0 (7.74)

If U is a neighborhood of p, the map ϕt(p) above constitutes a local one-

Fig. 7.7: Fundamental Vector

parameter group of transformations of M associated with the vector field X∗ =
σ(X), called the fundamental vector field. It is not really possible to draw a good
picture of a fundamental vector field, since for starters, all but the most trivial
principal fiber bundles, either live in higher dimensions, or have complicated
topologies. Nevertheless, figure 7.7 may be of some help in visualizing these
vector fields.

7.3.3 Theorem
(Rg)∗(σ(X)) = σ(Adg−1X). (7.75)

Proof Let ϕt but the one-parameter group of diffeomorphisms associated with
σ(X) at p and ψt be the one-parameter group of diffeomorphisms associated
with (Rg)∗(σ(X)) at pg. The map Rg : M → M is a local diffeomorphism, so
as in equation 7.9 we have the commuting diagram,

M
Rg−−−→ M

ϕt ↓ ψt ↓

M
Rg−−−→ M.

Thus, we get,

ψt = Rg ◦ ϕt ◦Rg−1 ,

= Rg ◦RetX ◦Rg−1 ,

= Rg−1etXg,
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The one-parameter group of diffeomorphisms {g−1etXg} is generated byAdg−1X,
so the vector field associated with ψt is σ(Adg−1X). We summarize this in the
following diagram,

X (M)
(Rg)∗−−−−−→ X (M)

σ ↑ σ ↑
g

Adg−1

−−−−−→ g.

It might be instructive to present a second proof in the style of theorem 7.66

(Rg∗)σ(X) =
d

dt
[Rg(pe

tX)]t=0,

=
d

dt
[petXg]t=0,

=
d

dt
[p(gg−1)etXg]t=0,

=
d

dt
[(pg)g−1etXg]t=0,

=
d

dt
[(pg)etAdg−1X ]t=0,

= σpgAdg−1X.

Here, we have used equation 7.58 in the next to last step. This formula is
consistent with the formula for the pull-back of the Maurer-Cartan form 7.66
by the following computation,

R∗gω(σ(X)) = ω(Rg∗σ(X)),

= ω(σ(Adg−1)X),

= Adg−1ω(σ(X)).

The map
σ : g→X (M)

given by
X 7→ X∗ = σ(X)

can also be viewed in alternative way by considering the map

σp : G→M,

g 7→ σp(g) = pg.

Then
σ(X)(p) = σp∗(X)e

This small variation of the definition of a fundamental vector is helpful in es-
tablishing the following,

7.3.4 Theorem The map σ is a Lie algebra homomorphism, that is,

σ([X,Y ]) = [σ(X), σ(Y )]. (7.76)
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Proof Aside from a small change in notation, the proof here is the same as
in Spivak [34], and in Kobayashi-Nomizu [18]. Let ξt(p) = etX = RetXp be the
one-parameter group of diffeomorphisms associated with X ∈ g, and let Y ∈ g.
We extend X and Y to left-invariant vector fields in G. By theorem 7.1.8, we
have

[X,Y ] = £XY,

= lim
t→0

Ye − (ξt∗Y )e
t

,

= lim
t→0

Ye − (RetX∗Y )e
t

,

= lim
t→0

Ye − (Ade−tXY )e
t

, as in the proof of theorem 7.1.8.

Denote by Rg : M →M , the map Rg(p) = pg, then

(RetX ◦ σpe−tX )(g) = p(e−tX)getX .

Thus, once again by theorem 7.1.8, the Lie bracket of the fundamental vectors
gives

[σ(X), σ(Y )] = lim
t→0

σ(Y )p − [RetX∗σ(Y )]p
t

,

= lim
t→0

σp∗Ye − σ(Ade−tX (Y ))p
t

, as in theorem 7.3.3

= lim
t→0

σp∗Ye − σp∗(Ade−tX (Y ))e
t

,

= σp∗ lim
t→0

Ye − (Ade−tXY )e
t

,

= σ([X,Y ])

For the time being, the results in theorems 7.3.3 and 7.3.4 might appear as a
pure formality, but as we will see later, they are instrumental in the treatment
of connections on principal fiber bundles. The first of these two formulas tell us
how to push forward fundamental vectors along the orbit of right-translations.
The second theorem states that the fundamental vectors constitute a Lie algebra
that is completely determined by the lie algebra of the group. The two results
are used in interpreting the meaning of connections on principal fiber bundles,
as later defined in 9.3.2.



Chapter 8

Classical Groups in Physics

In this section we present a pedestrian view of some of the common Lie
algebras and classical Lie groups that appear in mathematical physics.

8.1 Orthogonal Groups

8.1.1 Rotations in R2

Let z = x + iy be a complex number, and consider the map introduced in
section 5.2.2

(x+ iy)
α−−−→

[
x y
−y x

]
.

The map is clearly a vector space isomorphism between the complex numbers
and a subset of the set 2× 2 matrices. The map can be written as

(x+ iy)
α−−−→ xI + yJ,

where I is the identity matrix and J is the symplectic matrix 5.50, with J2 =
−I. Define

U(1) = {z ∈ C : |z| = 1}

to be the group of unimodular complex numbers. If z ∈ U(1), then we can
write z in the form z = eiθ. The map θ → eiθ is not 1-1 because replacing θ by
θ + 2π gives the same number. The Kernel of the map is the set {2πZ}, that
is, the integer multiples of 2π. U(1) acts on C by multiplication, which results
on a rotation by θ. The action passes to the circle S1 ∼= R/(2πZ). By Euler’s
formula, eiθ = cos θ + i sin θ, so α restricts to a map from U(1) to the special
orthogonal group SO(2,R) consisting of 2× 2 rotation matrices,

eiθ
α−−−→ Rθ =

[
cos θ sin θ
− sin θ cos θ

]
.

It is an elementary exercise to verify that

269
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eiθ1 · eiθ2 α−−−→ Rθ1 ·Rθ1 , that is,

ei(θ1+θ2) α−−−→ Rθ =

[
cos(θ1 + θ2) sin(θ1 + θ2)
− sin(θ1 + θ2) cos(θ1 + θ2).

]
.

The exercise amounts to multiplying the rotation matrices and recognizing the
summation formulæ for sine and cosine. Thus, the map is a smooth Lie group
homomorphism. Since the map is also a diffeomorphism, we have a Lie group
isomorphism U(1) ∼= SO(2,R). For reasons that will become apparent in com-
paring later with the discussion of rotations in R3 by quaternions, we show
the expression for the matrix rotation Rθ as the product of two consecutive
rotations by θ/2, by means of the double angle formulas

Rθ =

[
cos2 θ

2 − sin2 θ
2 2 sin θ

2 cos θ2

−2 sin θ
2 cos θ2 cos2 θ

2 − sin2 θ
2

]
,

=

[
q2
0 − q2

1 2q0q1

−2q0q1 q2
0 − q2

1

]
, (8.1)

where q0 = cos θ2 and q1 = sin θ
2 .

Now, consider the exponential map φ : R→ SO(2,R) given by,

t
φ−−−→ etA =

[
cos tθ sin tθ
− sin tθ cos tθ

]
. (8.2)

A matrix etA is orthogonal if (etA)T = (etA)−1 = e−tA, so this implies that
AT = −A. Per our previous discussion, the matrix A is a representative of the
Lie algebra, so the Lie algebra of the orthogonal group consists of antisymmetric
matrices. For the special orthogonal group with matrices with det eA = 1, the
formula 5.45,

det eA = eTrA

implies that elements A of the Lie algebra also have 0 trace. A = φ′(0), with
φ(0) = I. so,

A =
d

dt

[
cos tθ sin tθ
− sin tθ cos tθ

]
t=0

. (8.3)

=

[
0 θ
−θ 0

]
= θ

[
0 1
−1 0

]
. (8.4)

This means that the matrix J is a basis for the Lie algebra so(2,R). This
example is as simple as it gets, but there are some good lessons to be learned.
As it was discussed earlier, the significance of the Lie algebra element A and
the basis J is that they constitute the generators of an infinitesimal rotation
near the identity. This becomes clear if one looks at the rotation matrix with
θ small. Then, cos θ ' 1 and sin θ ' θ. To first order, the rotation matrix is
given by Rθ ' I + θJ = I + A. We verify that the exponential map gives
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the group element from the infinitesimal generator. The computation is almost
identical to the proof of Euler’s formula by Maclaurin series. The key is that
J2 = −I, J3 = −J , etc., so that

eA = I +A+ 1
2!A

2 + 1
3!A

3 + 1
4!A

4 + 1
5!A

5 + . . .

= I + θJ + 1
2! (θJ)2 + 1

3! (θJ)3 + 1
4! (θJ)4 + 1

5! (θJ)5 . . .

= (I − 1
2!θ

2 + 1
4!θ

4 + · · ·+)I + (θ − 1
3!θ

3 + 1
5!θ

5 + . . . )J.

Hence

eθ J = (cos θ)I + (sin θ)J, (8.5)

which is the original rotation matrix. The irreducible representations of U(1)
are the trivial representation and the 2× 2 matrix representations given by the
maps,

φn(eiθ) =

[
cos 2nθ sin 2nθ
− sin 2nθ cos 2nθ

]
, n ∈ Z+,

so basically, the irreducible representations are the homomorphisms of the group
into itself.

8.1.2 Rotations in R3

The Lie group SO(3,R) consists of 3 × 3 orthogonal matrices with deter-
minant equal to 1. The Lie algebra so(3,R) is the set of 3 × 3 antisymmetric
matrices with zero trace. The zero trace condition is superfluous since the di-
agonal elements of an antisymmetric matrix are zero. In consideration of the
case above for so(2,R), we choose as basis for so(3,R), the matrices.

αx =

0 0 0
0 0 1
0 −1 0

 , αy =

 0 0 1
0 0 0
−1 0 0

 , αx =

 0 1 0
−1 0 0

0 0 0

 .
The exponentials Rx = eαxθ1 , Ry = eαyθ2 , Rz = eαzθ3 represent rotations about
the x, y and z axes respectively. In explicit form, these matrices are,

Rx(θ) =

[
1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

]
, Ry(θ) =

[
cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

]
, Rz(θ) =

[
cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

]
.

Any rotation in R3 can be obtained by a composition of rotations about the
x, y and z axes. However, the standard in physics is to utilize the Euler angles
{φ, θ, ψ} introduced by Euler to study the motion of rigid bodies. The general
Euler angle rotation is obtained by the composition of three rotations carried
as follows (See figure 8.1).

1. Perform a rotation Rz(φ) by an angle φ around the z axis. We label the
new axes as {ξ, η, z}.

2. Follow by a rotation Rξ(θ) by an angle θ around the new x axis, which
in step (1) we labelled ξ. We label the new axes as {ξ, η′, z′}.
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Fig. 8.1: Euler Angles

3. Finish with a rotation Rz′(ψ) by an angle ψ around the new z-axis, which
in step (2) we labelled z′. The final axes are labelled {x′, y′, z′}

The rotation matrices are

Rz(φ) =

[
cosφ sinφ 0

− sinφ cosφ 0

0 0 1

]
, Rξ(θ) =

[
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

]
, Rz′(ψ) =

[
cosψ sinψ 0

− sinψ cosψ 0

0 0 1

]
. (8.6)

A straight-forward matrix multiplication yields the full rotation R = Rz(φ) ·
Rξ(θ) ·Rz′(ψ),

R =

[
cosψ cosφ−cos θ sinφ sinψ cosψ sinφ+cos θ cosφ sinψ sinψ sin θ

− sinψ cosφ−cos θ sinφ cosψ − sinψ sinφ+cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

]
. (8.7)

Since R is the product of orthogonal matrices, the matrix is also orthogonal and
R−1 = RT . If we consider the unit 2-sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1},
the rotation gives a map R : S2 → S2. Any rotation of S2 can be viewed
as a composition R of the three Euler angle rotations, or as a single rotation
around an axis pointing towards the image of the north pole along the axis z′.
In principle, we should be able to prescribe a direction and an angle as the data
to find a matrix representing a rotation by the given angle around the given
direction. Finding this data in terms of the Euler angles requires a bit of work.

8.1.3 SU(2)

In this subsection, we develop a representation of rotations in terms of 2×2
complex matrices. As discussed in section 1.4, orthogonal transformations in
Rn are isometries, so they can be described as the group of transformations that
preserve length. In R3 the length is given by g(X,X) = x2 + y2 + y2 under the
standard metric. Getting a little ahead of ourselves, let’s consider the metric
η = diag(+ − −−) for Minkowski’s space as in 2.35. Let xµ = (t, x, y, z) be
the components of a vector in M1,3. Consider the map from M1,3 to a 2 × 2
Hermitian matrix given by,

xµ = (t, x, y, z) 7→ xAḂ =

[
t+ z x− iy
x+ iy t− z

]
, µ = 0, 1, 2, 3 (8.8)
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The index notation for the matrix X = (XAḂ) is meant to elucidate the prop-

erty of Hermitian matrices for which, the complex conjugate X
AḂ

equals the

transpose XBȦ. The bar index notation was used in early work on spinors by
Veblen and Taub. Bar indices were later changed to prime indices X = (XAA′)
in some seminal work by R. Penrose in the context of twistors. When conve-
nient, we will invoke the Penrose notation. The map is chosen so that,

‖xµ‖2 = detX = det(xAḂ).

We can write the matrix in terms of a basis,

xAḂ =

[
t+ z x− iy
x+ iy t− z

]
,

= t

[
1 0
0 1

]
+ x

[
0 1
1 0

]
+ y

[
0 −i
i 0

]
+ z

[
1 0
0 −1

]
,

= xµσAḂµ , (8.9)

where,

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (8.10)

Here, σ0 = I and {σi, i = 1, 2, 3} are the Pauli matrices. For now, we constrain
to the spatial part of the matrix by restricting to indices i, j . . . = 1, 2, 3. Since
det(X) is equal to the metric we wish to preserve, we seek unitary matrices

Q =

[
α β
γ δ

]
∈ SU(2),

such that det(X) is invariant under a similarity transformation. specializing to
R3 by setting the coordinate t = 0, the similarity transformation reads

X̃ = QXQ†,[
z̃ x̃− iỹ

x̃+ iỹ −z̃

]
=

[
α β
γ δ

] [
z x− iy

x+ iy −z

] [
δ −β
−γ α

]
. (8.11)

The quantities {α, β, γ, δ} are called the Cayley-Klein parameters. The struc-
ture of the Lie algebra su(2) can be obtained in a completely analogous manner
as was done for the orthogonal groups. If t 7→ etA is a one-parameter subgroup
of SU(2), then the inverse of etA is equal to its Hermitian adjoint, that is,

(etA)−1 = (etA)†,

e−tA = etA
†
.

Taking the derivative at t = 0, we find that A† = −A. The formula det(eA) =
eTrA shows that if det(eA) = 1 then TrA = 0. We conclude that the Lie
algebra,

su(2) = {A ∈ GL(2,C) : A† = −A, Tr(A) = 0}, (8.12)
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consists of all traceless anti-Hermitian 2 × 2 matrices. This means that the
Cayley-Klein parameters are not all independent, as they must satisfy the con-
ditions

γ = −β, δ = α.

The rotation matrix in R3 represented by the Cayley-Klein parameters can be
obtained by direct computation of the matrix multiplication 8.11 and picking
out the coefficients of the transformed vectors. One may use the trick of setting

x+ = x+ iy, x− = x− iy,

as done in Goldstein [11], or one can apply the transformation to the basis
vectors given by the Pauli matrices, or these days, one can simply insert into
computer algebra system. The resulting matrix A is given by

A =


1
2 (α2 − γ2 + δ2 − β2) i

2 (γ2 − α2 + δ2 − β2) γδ − αβ
i
2 (α2 + γ2 − δ2 − β2) 1

2 (α2 + γ2 + β2 + δ2) −i(αβ + γδ)

βδ − αγ i(αγ + βδ) αδ + βγ

 . (8.13)

By inspection, the set of Pauli matrices σ = {σ1, σ2, σ3} is a basis for the Lie
algebra. A quick computation gives,

σ2
1 = σ2

2 = σ2
3 = I, det(σi) = −1.

and structure constants,

[σi, σj ] = 2iεkijσk, (8.14)

where εkij is the Levi-Civita permutation symbol 2.41.
The factor 2i in the formula for the structure constants

creates a minor conflict between physicists and mathemati-
cians, but this is historically unavoidable. For example, from
the second permutation symbol identity in 2.46, it follows im-
mediately that, because of the i factor, the components of the
Killing form are −4δij . Thus, for a physicist, a Lie algebra
is compact if the Killing form is negative definite, which is
the opposite of what was stated earlier. In quantum mechanics, it is customary
to denote the set of Pauli matrices by a vector-like notation σ = (σ1, σ2, σ3),
in which case, the spin operator in the spin 1/2 representation, is written as
J = 1

2σ. The multiplication table of Pauli matrices exhibits a cyclic permuta-
tion feature as shown in the adjacent figure. We can immediately verify that
σ1σ2 = iσ3, σ2σ3 = iσ1 and σ3σ1 = iσ2. Thus, as shown in the diagram, the
product of two Pauli matrices gives i times the third matrix if the product is
taken clockwise, and −i times the third matrix if traversed counterclockwise.
At the center if the triangular diagram there is an i as part of a reminder in the
pneumonic, not to forget this factor. Since the squares of the Pauli matrices
give the identity, to get an analog of Euler’s formula in matrix form as in equa-
tion 8.5, we use the set {iσ1, iσ2, iσ3}. Like J , these matrices all have squares
equal to −I.
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At this point, we inject the observation that the algebra of Pauli matrices
is very closely related to the set H of quaternions. A quaternion is an entity of
the form

q = q01 + q1i + q2j + q3k, (8.15)

where the basis elements satisfy,

i2 = j2 = k2 = ijk = −1.

As a vector space, the space H of quaternions is isomorphic to R4 The com-
ponents (q1, q2, q3) are in 1-1 correspondence with R3 vectors. It quickly fol-
lows that, ij = k, jk = i, and ki = j. A 2 × 2 matrix representation of
the quaternion basis is obtained by the identity matrix, together with setting
{i, j,k} = {−iα1,−iα2,−iα3}. Another way of saying this, is to set

i = σ3σ2, j = σ1σ3, k = σ2σ1.

If one interprets the Pauli matrices as representations of linear transformations
in the complex plane, and since multiplication by i represents a rotation by 90o,
we see that in some sense the vector basis {i, j,k} of quaternion space corre-
sponds more to something more like dual planes to the basis vectors given by the
Pauli matrices. This is one of those places where the factor of i in the structure
constants for Pauli matrices causes differences with mathematical standards,
the latter following more the elegant algebraic construction by Hamilton. The
triplet (q1, q2, q3) of the quaternion is called the vector component. If one defines
the quaternion conjugate by

q̄ = q01− q1i− q2j− q3k

it follows that
‖q‖2 = qq̄ = q2

0 + q2
1 + q2

2 + q2
3 .

If we set
z0 = q0 + q2 i, and z1 = q2 + q3 i,

we can identify H with C + C j, by writing,

q = z0 + z1 j.

In this notation, the conjugate of the quaternion is given by

q̄ = z̄0 − z1 j = z̄0 − j z̄1.

The complex conjugate on the last term above comes from the minus sign
introduced by the anti-commutation of i and j, the price for transposing j to
the front. If q′ = w0 +w1 j is another quaternion, the right action of q on q′ by
quaternion multiplication gives,

q′q = (w0 + w1 j)(z0 + z1 j),

= w0z0 + w0z1 j + w1 j z0 + w1 j z1 j,

= (w0z0 − w1z̄1) + (w0z1 + w1z̄0) j.
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In matrix form the right action of q can be rewritten as

[w0 w1]
q−−→ [w0 w1]

[
z0 z1

−z̄1 z̄0

]
.

Thus, if q is a unit quaternion, that is, one with ‖q‖ = 1, the matrix on the right
above is in generic form of an element of SU(2). The set of all unit quaternions
can be identified with a three-sphere S3 ∈ R4. The quaternions form a division
algebra. If q 6= 0, then, similar to complex numbers, the inverse is given by

q−1 =
1

‖q‖2
q̄

Back to the Lie algebra, the quantities {iσ1, iσ2, iσ3} represent the infinitesimal
transformation that generate the elements of the group. Thus, for example, to
generate a rotation by an angle φ around the z-axis, we set,

Qφ = e
i
2φσ3 . (8.16)

Proceeding exactly as in the computation leading to equation 8.5, we find

Qφ = cos φ2 I + i sin φ
2 σ3, (8.17)

=

[
eiφ/2 0

0) e−iφ/2

]
. (8.18)

The result is a diagonal matrix since σ3 is diagonal, and hence, so is any power
of σ3. Yet another computation of the similarity transformation X̃ = QφXQ

†
φ,

where,

X =

[
z x− iy

x+ iy −z

]
, X̃ =

[
z̃ x̃− iỹ

x̃+ iỹ −z̃

]
,

yields,

x̃ = x cosφ+ y sinφ,

ỹ = −x sinφ+ y cosφ,

z̃ = z.

These are of course the correct equations for the rotation. It should be noted
that in the computation, which we leave as an exercise, we find a natural appear-
ance of double angle formulas for sine and cosine; this is how the φ/2 converts
to a φ in the final equation. The next Euler angle rotation is given by,

Qθ = e
i
2 θσ1 , (8.19)

= cos
θ

2
I + i sin

θ

2
σ1, (8.20)

=

[
cos θ2 i sin θ

2

i sin θ
2 cos θ2

]
. (8.21)
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The third Euler angle rotation looks just like the one in equation 8.18 with φ
replaced by ψ,

Qψ = cos ψ2 I + i sin ψ
2 σ3, (8.22)

=

[
eiψ/2 0

0 e−iψ/2

]
. (8.23)

The composite rotation is given by

Q = QψQθQφ =

[
ei(ψ+φ)/2 cos θ2 iei(ψ−φ)/2 sin θ

2

ie−i(ψ−φ)/2 sin θ
2 e−i(ψ+φ)/2 cos θ2

]
, (8.24)

which gives the Cayley-Klein parameters in terms of Euler angles. It should
be noted that if Q represents a rotation, then −Q represents exactly the same
rotation, since the minus sign cancels out in the similarity transformation. In
this sense, SU(2) is called a double cover of SO(3,R).
Let n = (n1, n2, n3) be a unit vector, and as before, set σ = (σ1, σ2, σ3). We
call a unit Pauli-Bloch vector, denoted by n · σ, the expression given by the
matrix,

n · σ = nkσAḂk =

[
n3 n1 − in2

n1 + in3 −n3

]
.

It is very easy to verify that given two vectors a and b, we have

(a · σ)(b · σ) = (a · b) I + i(a× b) · σ

Although we do not need the result above here, it is very neat that the formula
which is in essence indicates that the product of quaternions, incorporates both,
the dot and the cross products. The formula is helpful in establishing identities
for products of quaternions. With the notation above, the equation,

e
i
2 θ(n·σ) = cos θ2 I + i(n · σ) sin θ

2 (8.25)

gives a generalization of Euler’s formula extended to quaternions via Pauli ma-
trices. This is a beautiful result which was the goal that led Hamilton to
introduce quaternions in 1843. The formula represents a rotation by an angle θ
about an axis in the direction of the unit vector n. In terms of Hamilton quater-
nions, the rotation matrix in R3 is obtained by conjugation with a quaternion
q,

X̃ = qXq−1,

where,

R(q) ≡ R(θ,n) =

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 ,
(8.26)

with,

q = q0 + q1i + q2j + q3k,

= cos θ2 + [n1i + n2j + n3k] sin θ
2 .



278 CHAPTER 8. CLASSICAL GROUPS IN PHYSICS

This is clearly a generalization corresponding rotation matrix 8.1 in R2 in terms
of half-angle parameters. The formulation is not cluttered by factors of i; this is
the preferred form for computer scientists, computer game developers, and an
increasing number of engineers, to code rotations in numerical computations.

The Maurer-Cartan form ω of SU(2) can be computed directly from the Cayley-
Klein parameters,

ω = Q−1dQ.

In the computation we write the Lie algebra valued form as

ω =

[
ω3 ω1 − i ω2

ω1 + i ω2 −ω3

]
.

We then compute Q−1dQ and read the forms. The computation is actually
easier by hand than using Maple, but we recommend a pen with an extra fine
tip, and working on a sheet of paper in landscape orientation. The computation
is facilitated by noting that we only have to compute the first column to read
the components of the form. The result is

ω1 = cosφdθ + sinφ sin θ dψ,

ω2 = sinφdθ − cosφ sin θ dψ,

ω3 = dφ+ cos θ dψ. (8.27)

One can then verify that

dωi =
1

2
εijkω

j ∧ ωk,

from which we get the metric associated with the Killing form

ds2 = δij ω
iωj ,

= (ω1)2 + (ω2)2 + (ω3)2,

= dθ2 + sin2 θ dψ2 + (dφ+ cos θ dψ)2. (8.28)

For a discussion of the dynamics of rigid bodies using Euler angles, see the book
Classical Mechanics by Goldstein [11].

8.1.4 Hopf Fibration

In this section we discuss fibration structures over the projective spaces
FP1, where F stands for one of the division algebras {R, C, H, O}, that is
the real, the complex, the quaternion, and the octonion algebras. The classical
Hopf fibration is the one associated with CP1, but for pedagogical reasons, it
might be more instructive to start with the simpler case of the projective line.
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Hopf map on RP1

Let (q0, q1) be coordinates in R2 and consider the equivalence relation
(q0, q1) ∼ (λq0, λq1). The projective line RP1 is defined by the quotient of
the plane with this equivalence relation,

RP1 = (R2 − {0})/ ∼

Geometrically, RP1 consists of the space of lines through the origin in R2. The
coordinates (q0, q1) are called homogenous coordinates of RP1. Keeping in
mind that what really determines a point on the projective space are the ratios
of the coordinates, we can cover the manifold with two patches corresponding
to {q0/q1, q1 6= 0} and {q1/q0, q0 6= 0}. We subject the coordinates to the
restriction

q2
0 + q2

1 = 1.

The equation represents a unit circle S1 centered at the origin in R2. The circle
can be parametrized by

q0 = cos θ, q1 = sin θ.

The restriction implies that |λ| = 1. Topologically, the set of such λ’s is the
0-sphere S0 = {1,−1}, and has the structure of the group Z2. Every line
through the origin intersects the unit circle in exactly two antipodal points
which determine the same line, so we have a fibration

Z2 ↪→ S1 π−→ S1.

The Hopf map π for this fibration is defined by

π(q0, q1) = (2q0q1, |q0|2 − |q1|2)

Of course, the absolute values in the equation above are redundant, but they
are included here for motivation for the other Hopf fibrations. If we associate
(q0, q1) with a rotation matrix in SO(2), the reader will recognize this map as
the representation of rotations by half-angles 8.1,[

q0 q1

−q1 q0

]
π−−→

[
q2
0 − q2

1 2q0q1

−2q0q1 q2
0 − q2

1

]
.

If we were to try to define a rotation by quaternions in two dimensions, this
would be it. Let ζ be the coordinate in R representing the stereographic pro-

jection of a point (x, y) ∈ S1
π
S−−→ R. We recall from equation 5.66 that

(x, y) =

(
2ζ

ζ2 + 1
),
ζ2 − 1

ζ2 + 1

)
If we now let ζ = q0/q1 and simplify the expression above, we get

x = 2q0q1, y = q2
0 − q2

1 ,
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which are precisely the coordinates of the image of the Hopf map. In other
words, we have a remarkable relation between the Hopf map and the stereo-
graphic projection of the base space given by,

π(q0, q1) = π−1
S

(q0/q1), q1 6= 0.

If ζ 1 is the coordinate patch associated with the stereographic projection from
the north pole and ζ 2 the patch associate with the south pole, then in the
overlap region the transition functions that glue the fibration are given by

φ12 =
ζ 1

ζ 2

Hopf map on CP1

The matrices that represent elements of SU(2) can be written in terms of
the Cayley-Klein parameters

Q =

[
α β
−β̄ ᾱ

]
,

where,

α = ei(ψ+φ)/2 cos θ2 , (8.29)

β = ei(ψ−φ)/2 sin θ
2 . (8.30)

With apologies to the purists, we leave out a factor of i in the β parameter in
this section. This is done for the sake of better consistency with other formalism
that we need for this discussion. We present the Hopf map in terms of Euler
angle rotations, but we could just as easily use Hamilton quaternion variables.
Since detQ = 1, we have,

|α|2 + |β|2 = 1 (8.31)

This can be corroborated immediately since,

|α|2 + |β|2 = cos2 θ
2 + sin2 θ

2 = 1

We write (α, β) ∈ C×C in the form,

α = x1 + ix2, β = x3 + ix4.

As a vector space, C2 ∼= R4, so equation 8.31 gives parametric equations for a
unit sphere S3 ∈ R4.

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

In other words, the set of unit quaternions U(1,H) is a sphere S3 in analogy
to U(1,C) which describes a circle S1. The classical Hopf fibration (or Hopf
bundle) is the map, π : S3 → S2 given by,

π(α, β) = (2αβ̄, |α|2 − |β|2) ⊂ C×R ∼= R3, (8.32)



8.1. ORTHOGONAL GROUPS 281

or, in matrix form[
z x− iy

x+ iy −z

]
=

[
|α|2 − |β|2 2αβ̄

2ᾱβ |β|2 − |α|2
]
.

Indeed, for all α and β, the image of this map is in S2 because

|π(α, β)|2 = 4|α|2|β|2 + (|α|2 − |β|2)2,

= (|α|2 + |β|2)2,

= 1

Any other point (α′, β′) that maps to the same point π(α, β) must satisfy
(α′, β′) = (λα, λβ) for some complex number with |λ|2 = 1. When this hap-
pens, we say that these points are in the same equivalence class. Then, the
projective space defined as,

CP1 = (C2 − {0})/ ∼

represents the space of complex lines through the origin of C2. The complex
projective plane CP1 has the structure of a compact complex manifold of com-
plex dimension 1. Geometrically, it can be viewed as sphere S2 in which antipo-
dal points are identified. In quantum physics, and quantum computing, this is
called the Bloch sphere. Points in CP1 can be described by homogeneous coor-
dinates (α, β) as representative of the equivalence classes, or by inhomogeneous
coordinates

ζ 1 =
α

β
, β 6= 0, or ζ 2 =

β

α
, α 6= 0.

Figure 8.2 depicts a somewhat misleading but still useful visualization of

Fig. 8.2: CP1. Intersection of complex lines with S3 are S1’s.

the construction of CP1. The horizontal and vertical axes are copies of C
parametrized by α and β. Since a complex line is really a plane, the cross
product is 4-dimensional. The unit sphere centered at the origin is given by
the equation |α|2 + |β|2 = 1, so this is a three sphere S3. The intersection of
a complex line with S3 is a circle S1. The only point common to two different
lines through the origin is the origin, so the corresponding circles of intersection
are disjoint. The collection of all these circles is parametrized by a two sphere
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S2. In other words, if p ∈ CP1 ∼= S2 then π−1(p) is a circle S1 ∈ S3. The
circles S1 are called the fibers of the fibration.

π : U(2)/U(1) ' S3 S1

−−→ S2. (8.33)

What is not at all obvious is that any of these circles is linked exactly once with
any other circle of the fibration. To “unpack” this fibration in familiar terms,
we first compute the map in Cayley-Klein coordinates,

2αβ̄ = 2[ei(ψ+φ)/2 cos θ2 ][e−i(ψ−φ)/2 sin θ
2 ],

= 2eiφ cos θ2 sin θ
2 ,

= eiφ sin θ,

|α|2 − |β|2 = cos2 θ
2 − sin2 θ

2 ,

= cos θ.

Let ω = 2αβ̄. Identifying C×R with R3, that is, taking x = <(ω), y = =(ω),
we get a point in S2 in spherical coordinates

x = cosφ sin θ,

y = sinφ sin θ,

z = cos θ.

Let ζ be the complex number in equation 5.61, whose inverse image under the
stereographic projection πs gives the coordinates on the sphere,

(x, y, z) =

(
ζ + ζ

ζζ + 1
,

ζ − ζ
i(ζζ + 1)

,
ζζ − 1

ζζ + 1

)
Setting ζ = α/β to be the inhomogeneous coordinates of CP1 and simplifying
the double fraction using the fact that |α|2 + |β|2 = 1, we get the Hopf map
8.32. That is, a point π(α, β) in S2 given by the image of the Hopf map is just
the point in S2 obtained by the inverse stereographic projection

π−1
s

(
α

β

)
.

As stated above, the fiber of a point in S2 is a circle S1 in S3. The fibers of
points on a circle in S2 parallel to the equator, are linked circles that lie on a
torus - these are called Villarceau circles. Geometrically, the Villarceau circles
are obtained by the intersection of a torus and a plane tangential to antipodal
images of the generating circle. Hopf discovered the fibration in 1931, but I
only learned about Hopf fibrations in 1975 from studying Taub’s solution to
Einstein’s equation. Taub’s metric has topology R × S3 and spatial SU(2)
symmetry. The Taub metric is of the form

ds2 = −dτ2 + ηij(τ)ωi ⊗ ωj (8.34)
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Fig. 8.3: Hopf Fibration

where ω is essentially the Maurer-Cartan form of su(2). This is an example
of a gravitational instanton. However, the first time I saw a pictorial rep-
resentation of the fibration was a magnificent hand drawing made by Roger
Penrose discussing Robinson Congruences in the context of twistor theory; a
reproduction of this drawing appears in [29], for example. One has to marvel
at the earlier masters who were able to visualize this complex structure. For
us lesser humans, nowadays it takes little effort to render the images with a
computer algebra system, by lifting a parallel circle in S2 to S3, followed by a
stereographic projection from S3 to R3. The nested toroidal S1 links in figure
8.3 are the fibers of three circular parallels in the base space S2. The reader
will find a beautiful explanation of Villarceau circles in a paper by Hirsch [15].

There is a generalization of Hopf fibrations with S1 fibers to all com-
plex projective spaces, CPn. Consider the space Cn with coordinates Z =
(z1, z2, . . . , zn). The equation |z1|2 + |z2|2 + · · · + |zn|2 = 1 describes a sphere
S2n+1 ⊂ Cn. The space CPn of complex lines through the origin. Let
a, b ∈ S2n+1. Define an equivalence relation a ∼ b, if there exists c ∈ S1

such that a = bc. The idea is that a complex line through the origin is a 2-real
dimensional plane, which intersects the sphere on a circle. All points in such
circles are in the same equivalence class. CPn can be identified with the space
Cn/ ∼. The generalized fibration is,

S2n+1 S1

−−→ CPn. (8.35)

The corresponding fibration in the real case is

Sn
Z2−−→ RPn, (8.36)

since a line through the origin intersects the sphere Sn in two antipodal points.
The group elements are the identity and the antipodal map.
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Hopf map on HP1

The construction of the Hopf fibration over quaternion space, follows along
the same lines. Let (q1, q2) be quaternion coordinates in H2 ' R8, with

q1 = x1 + x2 + i + x3j + x4k,

q2 = x5 + x6 + i + x7j + x8k,

Introduce complex coordinates,

z1 = x1 + x2i, z3 = x5 + x6i,

z2 = x3 + x4i, z4 = x7 + x8i,

so that

q1 = z1 + z2j,

q2 = z3 + z4j. (8.37)

Consider the equivalence relation (q1, q2) ∼ (λq1, λq2), ; λ ∈ H, and define the
quaternionic projective space

HP1 = (H2 − 0)/ ∼ .

As before, (q1, q2) are homogeneous coordinates representing equivalence classes
of quaternionic lines. The space can be covered by two inhomogeneous coordi-
nate charts

ζ 1 =
q1

q2
, q2 6= 0, or ζ 2 =

q2

q1
, q1 6= 0.

We impose the condition,

|q1|2 + |q2|2 =

8∑
k=1

|xk|2 = 1,

which represents a sphere S7 ∈ H2. This implies that on the sphere S7, the λ’s
are unit quaternions, that is |λ|2 = 1. Thus, the fibers are 3-spheres, and we
have a fibration

S3 ↪→ S7 π−→ S4,

S3 ↪→ Sp(2)/Sp(1)
π−→ Sp(1).

The Hopf map π : S7 → S4 is defined by

π(q1, q2) = (2q1q̄2, |q1|2 − |q2|2) ∈ H×R ' R5

These look like the usual suspects. Let ξ, η ∈ C so that

ξ + η j ∈ H,



8.1. ORTHOGONAL GROUPS 285

and set

ξ + η j = 2q1q̄2,

z = |q1|2 − |q2|2

We can then arrange the Hopf map in familiar (quaternionic) matrix form[
z ξ − η j

ξ + η j −z

]
=

[
|q1|2 − |q2|2 2q1q̄2

2q̄1q2 |q2|2 − |q1|2
]

We can easily corroborate that (ξ, η, z) represent points in S4, again by the
familiar process

|ξ|2 + |η|2 + |z|2 = |2q1q̄2|2 + (|q1|2 − |q2|2)2,

= |q1|4 + 2|q1|2|q2|2 + |q2|4,
= (|q1|2 + |q2|2)2 = 1.

One can be a bit more explicit, inserting the complex coordinates 8.37 and
carrying out the short computation. We get

ξ = 2(z1z̄3 + z2z̄2),

η = 2(z2z3 − z1z4),

z = |z1|2 + |z2|2 − |z3|2 − |z4|2

At this point it should not be surprising that if one denotes by ζ 1 the quaternion
representing a point on S4 under the stereographic projection π

S
from the north

pole to H ' R4, then the quaternionic Hopf map is related to this projection
by the

π(q0, q1) = π−1
S

(
q0

q1

)
If ζ 1 and ζ 2 represent charts overlapping over a narrow band around the “equa-
tor” under the projective maps from the north and south pole respectively, then
on the overlap the transition functions are

φ12 =
ζ 1

ζ 2

and its inverse on the other direction.
For now, we will stay away from the octonion algebra because it is not

associative, however, there is also an projective octonion line version of the
Hopf map. The results are summarized in the following list,

S0 ↪→ S1 −−→ S1 ∼= RP1,

S1 ↪→ S3 −−→ S2 ∼= CP1,

S3 ↪→ S7 −−→ S4 ∼= HP1,

S7 ↪→ S15 −→ S8 ∼= OP1.



286 CHAPTER 8. CLASSICAL GROUPS IN PHYSICS

The Hopf fibration is a seminal discovery in algebraic topology because, through
a formalism called the long, exact, homotopy sequence of a fibration, it became
possible to establish the existence of the first, non-vanishing, high dimension
homotopy groups of spheres. The long exact homotopy sequence applied to
S3 π−→ S2 yields the result

π3(S2) ∼= π2(S2) = Z.

The Hopf fibration associated with CP1 = P1(C) describes a singly-charged
Dirac monopole, and the fibration associated with HP1 enters in the descrip-
tion of a Yang-Mills instanton. These are explored in chapter 9 after properly
introducing connections on principal fiber bundles.

8.1.5 Angular Momentum

As indicated in the preface to this book, we present a simplified and lim-
ited version of basic quantum mechanics for the benefit of those mathematics
students who have no formal training on the subject. Quantum Mechanics was
developed in 1926 by Schrödinger and Heisenberg. The axiomatic description
here is a summary of the framework as envisioned by Dirac and von-Neumann.
The axioms really are axioms in the sense of Euclid; they cannot be proved. The
axioms are not self-evident, but they are founded on experience and physical
intuition.

� Postulate QM1 The state of a particle is described by a wave function
ψ(t, x, y, z) in some complex Hilbert space H with inner product 〈 | 〉.
The quantity,

ψ∗ψd3r

represents a probability density of finding the particle within a volume
element d3r. The total probability is,

P =

∫
H
ψ∗ψd3r = 1.

� Postulate QM2 Measurable (or observable) quantities such as energy and
momentum, are represented by a linear Hermitian operator L acting on
ψ. The measurement of the state is given by the expectation value,

〈ψ〉 = 〈ψ∗|L|ψ〉,

=

∫
H
ψ∗Lψd3r

� Postulate QM3 From the spectral theorem for Hermitian operators, the
possible outcomes of the observables are the eigenvalues of the operator.
The eigenvalues of real and eigenstates corresponding to different eigen-
values are orthogonal.
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The position operator is multiplication. The linear momentum and energy
operators are obtained intuitively by starting with a classical solution to the
wave equation. In dimension one, the quantity,

ψ = Aei(kx−ωt)

is such a solution with speed v = k/ω. The energy E and momentum p are
related to the wave number k and the angular frequency ω by the equations,

p = }k, E = }ω,

so that,

ψ = Ae
i
} (px−Et).

Taking partial derivatives with respect to x and t respectively, we get,

∂

∂x
ψ =

i

}
p ψ,

∂

∂t
ψ = − i

}
Eψ,

By ansatz, the choice for the operators is,

p̂x =
}
i

∂

∂x
,

Ê = i}
∂

∂t
,

Generalizing momentum to dimension 3, the operators become,

p =
}
i
∇,

Ê = i}
∂

∂t
.

The operator for total energy operator called the Hamiltonian H, is the Kinetic
energy KE = p2/(2m) plus the potential energy PE = V . Thus, Schrödinger
was led to the quantum mechanics equation,

Hψ = Êψ,

− }2

2m
∇2ψ + V ψ = i}

∂ψ

∂t
. (8.38)

For a free particle for which the energy does not depend on time, the stationary
states are described by the discrete set of eigenfunctions and energy eigenvalues
of the equation,

− }2

2m
∇2Ψn = EnΨn,

where
Ψn = e−(i/})Entψn(r),
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and ψn depends only one the spatial coordinates r = (x1, x2, x3) = (x, y, z). Let
p = (px, py, py) be the components of the momentum operator. The following
basic commutation relations hold,

[xi, xj ] = 0,

[pi, pj ] = 0,

[pi, xj ] = i}δij . (8.39)

The first commutation relation above is trivial since in number multiplication,
the order of the factors does not alter the product. The commutation relation
for two momenta follows from the symmetry of indices of second order partial
derivatives. The third commutation relation can done for each pair of indices.
In most elementary quantum mechanics books, one example is worked out and
the rest are taken on faith or left as an exercise. Here is one example. Let f be
an arbitrary function; compute,

[px, x](f) = −i}
(
∂

∂x
(xf)− x ∂

∂x
f

)
,

= −i}(f + xfx − xfx),

= −i}f,
[px, x] = −i}

At this stage, having gained experience in manipulating indices, it is just as
easy to do all the cases at once,

[pi, xj ]f = −i}
(

∂

∂xi
(xjf)− xj

∂

∂xi
f

)
,

= −i}
(
∂xj
∂xi

f + xj
∂f

∂xi
− xj

∂f

∂xi

)
,

= −i}δijf
[pi, xj ] = −i}δij .

The definition of the angular momentum operator in quantum mechanics is
given by simple extension of the classical formula,

L = r× p. (8.40)

The explicit components of angular momentum are,

Lx = ypz − zpy,
Ly = zpx − xpz,
Lz = xpy − ypx. (8.41)

In index notation,

Li = εi
jkxjpk. (8.42)
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Let us derive the following commutation relations involving angular momentum,

[Li, xj ] = i}εkijxk,
[Li, pj ] = i}εkijpk, (8.43)

For the first equation, we can demonstrate an instance,

[Lx, y]f = (ypz − zpy)(yf)− y(ypz − zpy)f,

= y2pzf − zpy(yf)− y2pzf + yzpyf

= −z[py, y]f,

[Lx, y] = i}z.

But, since we have already introduced the Levi-Civita symbol 2.41, we can use
the momentum commutators 8.41 and have fun doing all the cases at once.
Here is the computation,

[Li, xj ]f = [εi
kmxkpm, xj ]f,

= εi
kmxkpm(xjf)− xj(εikmxkpm)f,

= xkεi
kmpm(xjf)− xjpm(f)

= xkεi
km[pm, xj ]f

= −i}xkεikmδmj ,
= −i}xkεikj ,
= i}xkεkij

The formula for the commutator [Li, pj ] is very similar and we leave it as an
exercise. Instead, we go for the gold of the commutators.

8.1.1 Proposition
[Li, Lj ] = i}εkijLk. (8.44)

As above, we show that the concept is easy by doing the following case

[Lx, Ly] = Lx(zPx − xpz)− (zPx − xpz)Lx,
= (Lxzpx − zPxLx)− (Lxxpz − xpzLx),

= (Lxz − zLx)px − x(Lxpz − pzLx),

= −i}ypx + i}xpy,
= i}(xpy − ypx),

= i}Lz.

In the third line above we used pxLx = Lxpx, Lxx = xLx. To do all cases
at once, one needs the product of permutation symbol identities 2.46. This is
a great exercise in index gymnastics but hides the simplicity of the two other
independent cases that can be done as above,
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Equation 8.44 is the primary reason why the topic of angular momentum is
included in this section. We will work in units of }, that is, we set } = 1. Then
comparing with the commutator relations 8.14 for the Pauli matrices, we see
that apart from a factor of 2, we see that the components of L are generator of
the lie algebra su(2). Following the QM postulates, we seek a Hilbert space on
which angular momentum acts as a linear operator, to find a function space that
provides a representation for the algebra. Naturally, we seek such functions over
a two sphere as the base space. The standard process one finds in most classic
books on quantum mechanics might look a bit mysterious to those who see it
for the first time, but as we will demostrate, it is just an implementation of the
Cartan subalgebra for the angular momentum representation of the algebra.

In the case of su(2) there is only one generator, in the Cartan subalgebra,
which we choose to be Lz, so, the rank of the algebra is one. We look for
a representation in which Lz is diagonal. We also seek a Casimir operator,
namely, an operator that commutes with all basis elements of g The number
of Casimir operators in a semisimple Lie algebra is equal to the rank of the
algebra. The candidate for the Casimir operator for su(2) is,

L2 = L2
x + L2

y + L2
z. (8.45)

We show that the operator commutes will all three generators, that is.

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0

Let’s show for instance, that [L2, Lz] = 0. We need to establish that

[L2
x + L2

y + L2
z, Lz] = 0.

First, it is easy to verify by direct computation of both sides that in general,

[A2, B] = A[A,B] + [A,B]A

Applying this identity to the square of the components of L, we get,

[L2
x, Lz] = Lx[Lx, Lz] + [Lx, Lz]Lx,

= −iLxLy − iLyLx,
[L2
y, Lz] = Ly[Ly, Lz] + [Ly, Lz]Ly,

= iLyLx + iLxLy.

[L2
z, Lz] = 0.

Adding the last three equations yields,

[L2, Lz] = [L2
x + L2

y + L2
z, Lz],

= −iLxLy − iLyLx + iLyLx + iLxLy,

= 0.

We introduce the ladder operators,

L+ = Lx + iLy,

L− = Lx − iLy, (8.46)
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We will see below that the ladder operators are the raising and lowering opera-
tors of the algebra. The process of finding the irreducible representations starts
with establishing a number of commutation relationships. First, it is easy to
verify that,

L+L− = L2
x + L2

y + Lz,

L−L+ = L2
x + L2

y − Lz. (8.47)

Indeed, we have,

L+L− = (Lx + iLy)(Lx − iLy),

= L2
x + L2

y + i(LyLx − LxLy),

= L2
x + L2

y + i[Ly, Lx],

= L2
x + L2

y + Lz,

and similarly for L+L−. It is also easy to verify that,

[L+, L−] = 2Lz,

[Lz, L+] = L+,

[Lz, L−] = −L−. (8.48)

These commutators define the Cartan subalgebra. Since in this case, the subal-
gebra is one-dimensional, the roots are the vectors in R given by r(1) = (1) and
r(−1) = (−1). We associate the 0 root with Lz. The root diagram called A1 is
a simple as it gets; it consists of two unit vectors at the origin in R. Putting
the commutator results above together leads to the following formula,

L2 = L+L− + L2
z − Lz,

= L−L+ + L2
z + Lz. (8.49)

The result follows directly from equation 8.47. We show the steps for the first
of these.

L+L− = L2
x + L2

y + Lz,

= L2 − L2
z + Lz,

L2 = L+L− + L2
z − Lz,

The formalism can then be used to obtain the ubiquitous expression for the mo-
mentum operator of a single particle in spherical coordinates. The computation
starts with inverting the Jacobian matrix in 2.30,

∂

∂x
= sin θ cosφ

∂

∂r
+

1

r
cos θ cosφ

∂

∂θ
− sinφ

r sin θ

∂

∂φ
, (8.50)

∂

∂y
= sin θ sinφ

∂

∂r
+

1

r
cos θ sinφ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
, (8.51)

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
. (8.52)
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After some algebraic manipulations, we get,

Lz = −i ∂∂φ ,

L± = e±iφ
(
± ∂
∂θ + i cot θ ∂

∂φ

)
,

L2 = −
[

1

sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin2 θ

∂2f

∂φ2

]
(8.53)

Comparing with equation 3.9 we recognize L2 as the angular part of the spher-
ical Laplacian. Perhaps the most direct way to get the function space is to solve
Laplace’s equation in spherical coordinates by separation of variables, that is,
assuming that the solution is of the form ψ = Θ(θ)Φ(φ). The complete process
of obtaining the solutions is best suited for a course on partial differential equa-
tions or a course in electrodynamics, so we just present the result. The equation
is manifestly self-adjoint, hence the eigenvalues are real and eigenvectors cor-
responding to different eigenvalues are orthogonal. The eigenvalue equations
are,

LzYl,m(θ, φ) = mYl,m(θ, φ)

L2Yl,m(θ, φ) = l(l + 1)Yl,m(θ, φ). (8.54)

Here, eigenvalues l(l+1) are the orbital quantum numbers l are positive integers.
The solution of Laplace’s equation in spherical coordinates are the well-known
spherical harmonics Ylm,

Yl,m =
1√
2π

√
2l + 1

2

(l −m)!

(l +m)!
Plm(cos θ)eimφ, (8.55)

where Plm are the associated Legendre polynomials given by Rodrigues’ for-
mula,

Plm(cos θ) =
(−1)l

2ll!
sinm θ

(
d

d(cos θ)

)m+l

(sin2l θ). (8.56)

For each l there are 2l+1 possible values form given by the integers m = −l . . . l.
The eigenfunctions ψ can also be obtained by a method which is almost

entirely algebraic. First, the eigenvalue equation for the z-component of angular
momentum is,

Lzψ = λψ,

−i ∂
∂ψ

= λψ.

The solution is
ψ = f(θ)e−λθ.

For the function to be periodic on a sphere, we must have λ = m ∈ Z. The
normalized eigenfunctions of the φ component are,

Φ(φ) =
1√
2π
eimφ, m = 0,±1,±2, . . . .
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Since L2 − L2
z = L2

x + L2
y is physically a positive operator, the absolute value

of the eigenvalues of Lz for a given L2 are bounded. Let l be the integer
corresponding to the largest value of Lz for a particular value of L2. We switch
to the bracket notation and denote the eigenstates by

ψ = |l,m〉.

Let ψm be an eigenstate of Lz and recall from equation 8.48 that [Lz, L±] = L±.
Apply Lz to the state L±ψ. We get,

Lz(L±|l,m〉) = (L±Lz + [Lz, L±])|l,m〉,
= (L±Lz + L±)|l,m〉,
= (m± 1)(L±|l,m〉).

Thus, if ψm is an eigenfunction with eigengvalue m, L±ψm are eigenfunctions
with eigenvalues m±1. The ladder L± operators lower or raise the m quantum
number without changing the eigenvalue of L2. Hence, if m = l is the maximum
value for a particular state of L2, we have.

L+ψl = 0

Now, apply L− to this state. Using formula 8.49 yields,

L+L−ψl = (L2 − L2
z − Lz)ψl = 0.

But we are seeking states which are simultaneous eigenfunctions of the com-
muting operators L2 and Lz, so the eigenvalue of L2 must be l(l+1). For those
who have studied the solution Laplace’s equations by separation of variables
and infinite series, this would correspond to the step where one sets the eigen-
value of Legendre’s differential equation to l(l + 1) to cause the infinite series
to terminate, and thus yield polynomial solutions. In this manner, we have
recovered the eigenvalues in 8.54 almost entirely algebraically,

Lz|l,m〉 = m|l,m〉,
L2|l,m〉 = l(l + 1)|l,m〉. (8.57)

Eigenstates are basis vectors for the Hilbert space, so they should be normalized.
Thus, we require

〈l,m|l,m〉 = 1.

Suppose we have constants C±l,m such that,

ψ = L±|l,m〉 = C±l,m|l,m± 1〉.

Then, 〈ψ|ψ〉 = |C±l,m|2. On the other hand, we have,

L±|l,m〉 = (L2 − L2
z ∓ Lz)|l,m〉,

= (l(l + 1)−m(m± 1))|l,m〉,



294 CHAPTER 8. CLASSICAL GROUPS IN PHYSICS

so we choose,
C±l,m =

√
l(l + 1)−m(m± 1).

We conclude that the effect of applying the ladder operators to normalized
eigenstates is

L±|l,m〉 =
√
l(l + 1)−m(m± 1)|l,m〉. (8.58)

Recalling that L+ is a linear first order differential operator, and noting that
L+|l, l〉 = 0, we get a linear first order differential equation for Θ(θ) that is very
easy to solve. Then, carefully banging the solution with lowering operators leads
to Rodrigues’ formula for the associated Legendre polynomials. The matrix
elements of the representation are complicated. They are described by unitary
(2l + 1)-dimensional unitary matrices called Wigner D-matrices. If R(ψ, θ, φ)
is a rotation by Euler angles, and |l,m〉 are spherical harmonic eigenstates, the
matrix elements are given by,

Dl
mm′(ψ, θ, φ) = 〈l,m′|R(ψ, θ, φ)|l,m〉, (8.59)

= e−im
′φd lmm′(θ)e

−imφ, (8.60)

where,
d lmm′(θ) = 〈l,m′|eiθLx |l,m〉 = Dl

mm′(0, θ, 0) (8.61)

We content ourselves in these notes in wetting the appetite of the reader to
dig into more details in any senior/first-year graduate level text in quantum
mechanics.

8.2 Lorentz Group

The appropriate symmetry group in special relativity is the Lorentz group.
This is the group of transformations that leaves invariant the metric η =
diag(+ − −−) in Minkowski’s space M1,3. We will denote Lorentz transfor-
mations by the notation,

xµ′ = Lµνx
ν . (8.62)

The metric is invariant if, < Lx,Lx >=< x, x >, that is,

ηµνL
µ
αL

ν
β = ηαβ .

Transformations for which |Lµν | = 1, and L0
0 > 0, so that past and fu-

ture are not interchanged constitute the proper, orthochronous Lorentz group
SO+(1, 3). The Lorentz transformation laws for tensors T is the same as in the
Riemannian metric case as shown in equation 7.16

T ′
β1,...,βr
α1,...,αs = ∂x′β1

∂xµ1 . . .
∂x′βr

∂xµr
∂xν1

∂x′α1
. . . ∂x

νs

∂x′αs T
µ1,...,µr
ν1,...,νs . (8.63)

As usual, the metric is used to raise and lower indices and thus convert between
covariant and contravariant tensors. Another way to obtain a covariant tensor
from a contravariant one, is by use of the permutation symbol, but we need to
be a little careful. As noted in the paragraph elaborating on the Hodge star
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operator 2.87, the Levi-Civita symbol does not transform like a tensor, but
rather, like a tensor density of weight (−1). Instead, if g is any Riemannian
or pseudo-Riemannian metric such as η we define eµνκλ =

√
det g εµνκλ, which

does transform like a tensor called the Levi-Civita tensor. There are general
formulas similar to 2.46 for contractions of the Levi-Civita symbol for any di-
mension. The pattern can be inferred from the explicit formulas for dimension
four listed below,

εµνκλεαβγδ = δµνκλαβγδ ,

εµνκδεαβγδ = δµνκαβγ ,

εµνγδεαβγδ = 2!δµναβ = 2(δµαδ
ν
β − δ

µ
βδ
ν
α),

εµβγδεαβγδ = 3!δµα. (8.64)

An appropriate contraction of a tensor T with the Levi-Civita tensor gives
another tensor called the dual tensor Ť . Thus, for example, the dual of an
antisymmetric tensor Tµν is

Ťαβ =
1

2
√

det g
εαβµνTµν . (8.65)

A tensor as above for which Tµν = Ťµν is called self-dual. Such self-dual tensors
play a special role in the representation of the Lorentz group.

8.2.1 Infinitesimal Transformations

There are 6 infinitesimal generators for the Lie algebra so(1, 3). We can take
these generators to be,

j1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , j2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , j3 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 .

k1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , k2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , k3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .
The three generators {j1, j2, j3} correspond to the subgroup SO(3) of spatial
rotations and thus span the subalgebra so(3). The exponential map of these
generators yield matrices in which the spatial 3×3 blocks are the same rotation
matrices as in 8.1.2. There are three other generators which we call {k1, k2, k3}
involving the time parameter These generate the boosts. The k generators are
not manifestly antisymmetric, but that is because the signature of the met-
ric. The exponential map of the boost generators yield hyperbolic blocks. For
example, the k1 infinitesimal transformation in the t and x coordinates,[

t
x

]′
=

[[
1 0
0 1

]
+

[
0 θ
θ 0

]] [
t
x

]
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yields a Lorentz transformation of the form,
cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

 .
The transformation does represent a rotation, but it is imaginary. Here

cosh θ =
1√

1− β2
, sinh θ = − β√

1− β2
,

with β = v/c. This is the way these transformations appear in a first course
in special relativity. Any infinitesimal Lorentz transformation xµ′ = Lµνx

ν has

the form,

Lµν = δµν + ωµν , or,

Lµν = δµν + ωµν .

To preserve the metric, we must have,

ηµνL
µ
αL

ν
β = ηµν(δµα + ωµα)(δµβ + ωµβ),

= ηαβ + ωαβ + ωβα,

= ηαβ .

This means that ωαβ is antisymmetric, as expected from the analysis of the
similar situation with the exponential map of the rotation group. In any repre-
sentation of the Lorentz group, the infinitesimal transformations take the form,

I + 1
2ω

µνMµν , (8.66)

where Mµν are the antisymmetric matrices representing the six infinitesimal
transformations. These matrices obey the integrability commutation relations,

[Mµν ,Mστ ] = MµνMστ −MστMµν ,

= gνσMµτ − gµσMντ + gµτMνσ − gντMµσ. (8.67)

Apart from a factor of i}, this is the relativistic angular momentum tensor,
symbolically written, r∧p, where r and p are the position, and the 4-momentum
respectively. The notation means that

Mµν = xµpν − pµxν

The spatial components Jk = εk
ijMij are the generators of the subgroup SO(3),

and the spatial-temporal components Ki = M0i generate the boosts. The Lie
algebra commutator relations are given by

[Ji, Jj ] = iεkijJk,

[Ki,Kj ] = −iεkijJk,
[Ji,Kj ] = iεkijJk, (8.68)
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where,
J = 1

2σ.

For a spin 1
2 , the boosts are generated by,

K = ± i
2σ,

giving two inequivalent representations.
These matrices constitute a representation of the Lie algebra of the Lorentz

group called the ( 1
2 , 0) ⊕ (0, 1

2 ) spin representation. The group elements are
given by the exponential map,

Lµν = exp
[
i
2ω

αβ(Mαβ)µν
]
. (8.69)

8.2.2 Spinors

In a manner analogous to the construction of the 2-1 isomorphism between
SU(2) and SO(3), starting with the map 8.8, we seek a representation of Lorentz
transformations of a vector xµ ∈M1,3 in terms of transformations of the 2× 2

Hermitian matrix X = XAḂ . Since detX is equal to the norm of a vector that
we wish to preserve, the condition is equivalent to invariance under unimodular
transformations

X ′ = QXQ†, (8.70)

where Q ∈ SL(2,C).
We introduce spin space to as a pair {S2, εAB}, where S2 is a 2-dimensional

complex vector space and εAB is the symplectic form with components,

εAB =

[
0 1
−1 0

]
. (8.71)

The matrix elements of the symplectic form are the same as the Levi-Civita
symbol in dimension 2. It is assumed that spinors obey the transformation law,

φ′A = φBQ
B
A, (8.72)

where Q ∈ SL(2,C). An element φA ∈ S2 is called a covariant 2-spinor of rank
1. Associated with S2 there are three other spaces, the dual S∗2 , the complex

conjugate S2, and the complex conjugate dual S2
∗
. We will use the following

index convention,

φA ∈ S2 , φA ∈ S∗2 ,

φȦ ∈ S2 , φȧ ∈ S2
∗
.

We introduce dual and conjugate versions of the symplectic form εAḂ , ε
AB etc,.

all of which have the same matrix values. We use these to manipulate spinor
indices according to the rules,

φA = εABφ
B , φB = φAε

AB , (8.73)

φA = εAḂφ
Ḃ , φḂ = φAε

AḂ (8.74)
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namely, we lower on the left and raise on the right. The two operations are
inverse of each other as we can easily verify by lowering , then raising and
index,

φA = (εBCφ
C)εBA,

= εBCε
BAφC ,

= δACφ
C = φA.

Here we have used the permutation symbol identity which is the same as for
the Levi-Civita symbol,

εBCε
BA = δAC .

Higher rank spinors can be constructed as elements of tensor products of spin
spaces. Because of the antisymmetry of the symplectic form, one needs to be
more careful when raising and lowering spinor indices. For instance, Consider,
φAψA ∈ S2 ⊗ S∗2 . Then,

φAψA = φAεABψ
B ,

= εABφ
AψB ,

= −εBAφAψB ,
= −φBψB ,
= −φAψA.

We conclude that exchanging the position of a repeated spinor index introduces
a minus sign. In particular, for any rank one spinor φA, we have

φAφA = φAφ
A = 0.

It follows that the full contraction such as φABCφABC of a spinor with odd
number of indices with itself is zero. If a spinor is symmetric on any two
indices, then contracting on those two indices gives 0. Contraction on two
indices reduces the rank of a spinor by two. If a spinor is completely symmetric,
it is not possible to reduce the rank by contraction since any such contraction
is zero. The only completely antisymmetric spinor must be of rank two since
the indices can only attain the values 1 or 2 and there are only to permutations
possible. In fact, a completely antisymmetric spinor must be a multiple of εAB .
Thus, for example, for any spinor φA, we have

εABφC + εCAφB + εBCφA = 0

because this combination of spinor is antisymmetric and of rank 3. Another
good example is the relation,

φACφ
C
B = −φACφCB

Which is true since the position index C was exchanged. Hence the quantity
on the left is an antisymmetric spinor of rank two and it must be a multiple of
εAB . It is easy to check that the correct multiplicative factor is given by,

φACφ
C
B = − 1

2φCDφ
CDεAB .
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We can also have spin-tensors, the main example being the “connecting

spinor” σAḂµ in 8.10, which has one covariant tensor index and two spinor
indices. For convenience, we list the components here again,

σµ
AḂ =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]}
It is elementary to verify that the inverse matrices σµAḂ , that is, the matrices
such that,

σµAḂσν
AḂ = δµν ,

are given by,

σµAḂ =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 i
−i 0

]
,

[
1 0
0 −1

]}
The result is consistent with rasing the tensor index with the metric and low-
ering the spinor indices with the symplectic form. With these matrices, the
reverse of equation 8.9 is,

xµ =
1

2
σµAḂx

AḂ . (8.75)

A few words about index conventions are in order. The convention used here
most closely resembles that of the early developers Veblen and Taub (See for

example [36]). The main difference here is in choosing σµ
AḂ to be consistent

with Pauli matrices; this is closer to the choice in the Penrose prime notation.
In following established protocol, I have reluctantly adapted the notation with
both indices up, which is inconsistent with the index summation convention
for matrix multiplication of index-free expressions such as σ1σ2. My preference
would have been to choose σµ

A
Ḃ to correspond to the Pauli matrices. Instead,

lowering the second index results on the following matrices,

σµ
A
Ḃ =

{[
0 −1
1 0

]
,

[
1 0
0 −1

]
,

[
i 0
0 i

]
,

[
0 −1
−1 0

]}
It is straight-forward to verify the following spinor identities,

σµAḂσµCḊ = 2δACδ
Ḃ
Ḋ
,

σµ
AḂσµCḊ = 2εACεḂḊ,

σµ
AḂσνCḂ + σν

AḂσµCḂ = 2gµνδ
A
C . (8.76)

Remembering that σ matrices are Hermitian, and switching the position of
summation index B, the last equation above can be rewritten as,

σµ
A
Ḃσν

B
Ċ + σν

A
Ḃσµ

B
Ċ = −2gµνδ

A
C .

This equation is in the right summation index format for matrix multiplication,
so it can be written in an index-free form as,

σµσν + σµσµ = −2gµνI. (8.77)
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In view of the remarks above, the reader should be cautioned that the matrices
in this neat equation are not the standard Pauli matrices in the coordinate
representation we have chosen. Equation 8.77 is most important in formulating
Dirac’s equation, as shown below.
Analogous to the situation for SO(3), For every proper Lorentz transformation
Lµν , there are two unimodular matrices Q and −Q such that

σµ = QσνQ−1Lµν . (8.78)

A similar statement holds for improper Lorentz transformations. In this case,
we have

σµ = Qσ̄νQ̄−1Lµν . (8.79)

As discovered by Dirac, to obtain a relativistic extension of Schrödinger’s
equation in the spin 1/2 representation, which is invariant under Lorentz trans-
formations, one must introduce a second spinor field ψA. The field equations
are,

σµAḂ

(
}
i

∂

∂xµ

)
ψ̄B = −imcφA,

σµAḂ

(
}
i

∂

∂xµ

)
φ̄B = −imcψA, (8.80)

where the σ spin-tensors satisfy equation 8.77. The more familiar 4-spinor Dirac
equation is obtained by rewriting 8.80 in matrix form,

}
i

∂

∂xµ

[
0 −iσµAḂ

iσ µAḂ 0

] [
φB

ψ̄B

]
= mc

[
φA

ψ̄A

]
,

which is the standard Dirac equation for a free particle,

(γµpµ −mc)Ψ = 0. (8.81)

Here,

Ψ =

[
φA

ψ̄A

]
∈ S2 × S∗2

is a Dirac 4-spinor, and γ has the 4× 4 matrix representation,

γ =

[
0 −iσµAḂ

iσ µAḂ 0

]
.

Comparing with equation 8.77, we see that the γ’s satisfy the so-called Clifford
algebra relation,

γµγν + γνγµ = 2gµνI. (8.82)

We would like to establish some interesting connection between some spinor
and tensorial quantities. Consider for instance a null vector lµ ∈ M1,3. Since
the length of the vector is zero, the corresponding matrix lAḂ has determinant
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equal to zero; so the first row, is a multiple of the second and hence the matrix
is of the form,

lµ = σAḂµ φAψ̄Ḃ .

If we choose,

φA =

[
ζ
1

]
.

then, up to a constant, the components of the null vector are given by,

lµ = σµ
AḂφAφ̄Ḃ .

Using the matrix components of the sigma matrices as in 8.10, a short compu-
tation gives,

lµ = 1
2 (ζζ̄ + 1, ζ + ζ̄,−i(ζ + ζ̄), ζζ̄ − 1).

Normalizing, the vector becomes,

lµ =

(
1,

ζ + ζ̄

ζζ̄ + 1
,

(ζ + ζ̄)

i(ζζ̄ + 1)
,
ζζ̄ − 1

ζζ̄ + 1

)
. (8.83)

The spatial part precisely the inverse image of complex numbers ζ under the
stereographic projection 5.61, viewed as inhomogeneous coordinates ζ = φ1/φ2

on the Riemann sphere S2 ∼= CP1. The norm of the spatial part is one, so
the norm in M1,3 is zero, as it should be. One may view the sphere as the
intersection of the null cone with the hyperplane t = 1 (or −1), so this is
essentially the celestial sphere. Spinors transform by elements of SL(2,C) which
is the universal covering group of the group of Möbius transformations. Möbius
transformations are conformal maps, so this gives a connection with minimal
surfaces.

Next, we note that self-dual tensors of rank 2 are associated with symmetric
spinors. The connection is made by first defining the spinor,

σµν
A
B = σ[µ

AĊσν]BĊ ,

=
1

2
(σµ

AĊσνBĊ − σν
AĊσµBĊ), (8.84)

where the contraction σµν
A
A = 0 is clearly 0. By direct computation in the

coordinate system we have chosen. The values of the traceless matrices are,

σ01
A
B =

[
0 −1
−1 0

]
, σ02

A
B =

[
0 −i
i 0

]
, σ03

A
B =

[
−1 0
0 1

]
,

σ12
A
B =

[
−i 0
0 i

]
, σ23

A
B =

[
0 −i
−i 0

]
, σ13

A
B =

[
0 −1
1 0

]
,

It follows that σµνAB is symmetric. The values are,

σ01AB =

[
−1 0
0 1

]
, σ02AB =

[
i 0
0 i

]
, σ03AB =

[
0 1
1 0

]
,

σ12AB =

[
0 i
i 0

]
, σ23AB =

[
−i 0
0 i

]
, σ13AB =

[
1 0
0 1

]
.
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We find from the last set of equations that,

σ12 = σ12 = −iσ03,

σ13 = σ13 = iσ02,

σ01 = −σ01 = iσ23,

and hence

σ̌µν =
1

2
√

det g
εµνστσστ . (8.85)

is self-dual. From this, it follows that if FAB is a symmetric spinor, then

Fµν = σµνABF
AB (8.86)

is a self-dual tensor. It can also be verified by computation in the chosen
coordinate system that.

σµνABσ
στAB = −2δσµδ

τ
ν. (8.87)

From this, the equation above can be inverted,

FCD = 1
8Fστσ

στCD (8.88)

yielding a symmetric spinor from a self-dual tensor. This establishes a 1-1
correspondence between self-dual tensors of rank two, and symmetric spinors
of rank two. Tensors that transform like symmetric spinors of rank 2n are said
to be irreducible under a spin n representation. This is particularly relevant for
self-dual Maxwell tensors. More specifically, if,

F = Fµνdx
µ ∧ dxν

is the Maxwell 2-form, the corresponding Maxwell spinor is,

FAȦBḂ = σAȦµ σBḂν Fµν

Here, (almost) following Penrose, we have used undotted and dotted letters
with the same character, to avoid the proliferation of different letters. The
Maxwell spinor can be written as,

FAȦBḂ =
1

2
(FAȦBḂ − FBḂAȦ),

= φAB ε̄ȦḂ + φ̄ȦḂεAB ,

where, φAB and φ̄ȦḂ are symmetric spinors given by,

φAB =
1

2
FAĊB

Ċ ,

φ̄ȦḂ = φ̄AB

This gives a spinor decomposition of the tensor into self-dual and anti-self-dual
parts.
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The matrices σµν
A
B also serve to connect infinitesimal Lorentz and spinor

transformations. Given an infinitesimal Lorentz transformation as in equation
8.66, the corresponding infinitesimal spinor transformation is.

(I + 1
2ω

µνMµν)A
B

= δAB + 1
4ω

µν(σµν)AB .

In other words, the spinor representation of the angular momentum tensor is,

(Mµν)AB =
1

2
σµν

A
B . (8.89)

Index manipulation of Dirac 4-spinors Ψµ is done by an extension εµν of the
symplectic form to a 4× 4 matrix which is also antisymmetric. In an accepted
abuse of language, some authors refer to εµν as the metric spinor. As with
2-spinors, we lower on the left and raise on the right,

Ψµ = εµνΨν ,

Ψµ = Ψνενµ

In the coordinate basis we have chosen, εµν has components

εµν =

[
iεAB 0

0 −iε̄AB

]
(8.90)

The spinor-index version of the Clifford algebra relation 8.82 is

γµαβγ
νβ
γ + γναβγ

µβ
γ = 2gµνδαγ . (8.91)

In a completely analogous manner equation 8.84, we construct self-dual 4-spinor
γµν

α
β which we write in matrix form as,

γµν = γµγν − γνγµ = [γµ, γν ] (8.92)

Then, the infinitesimal momentum tensor 8.89 in the 4-spinor representation
becomes,

(Mµν)αβ = 1
2 (γµν)αβ . (8.93)

The matrices {I, γµ, γµν} and their duals, span the Clifford algebra. The dual
of I is the celebrated matrix

γ5 =
i

4!
εµνστγ

µγνγσγτ . (8.94)

The commutation relations 8.67 insure that

[γµν , γα] = ηµαγν − ηναγµ. (8.95)

The dual of the six γµν matrices do not yield independent matrices, and the
dual of γµ is essentially γµγ5, so the algebra is spanned by {I, γµ, γµν , γµγ5, γ5},
and it has 1 + 4 + 6 + 4 + 1 = 16 dimensions,. We have defined the gamma
matrices in a particular matrix representation, but the general relations that
describe the algebra are basis-independent.
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8.3 N-P Formalism

Spinors provide an interesting formalism introduced in 1962 by Newman
and Penrose [24] for the study of general relativity. Let {M, gµν} be a space-
time with Lorentzian metric of signature (+ − −−). Introduce a null tetrad
haµ = {nµ, lµ,−mµ,−m̄µ}, and dual frame forms,

θa = haµdx
µ, (8.96)

associated with the frame,

ea = hµa∂µ, hµa = {lµ, nµ,mµ, m̄µ}. (8.97)

In terms of the tetrad, the space-time metric is given by,

ds2 = ηabθ
aθb, (8.98)

where η is the quasi-orthonormal flat metric,

ηab =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (8.99)

used to manipulate tetrad indices. Here, the metric tensor has the form

gµν = 2l(µnν) − 2m(µm̄ν). (8.100)

The Cartan structure equations are,

d θa + ωab ∧ θb = 0, ωab = −ωba,
d ωab + ωac ∧ ωcb = Ωab, Ωab = −Ωba,

d Ωab − Ωac ∧ ωcb + ωac ∧ Ωcb = 0. (8.101)

In this formalism the connection components are called the Ricci rotation co-
efficients, which are defined by,

γabc = hνb;µh
µ
ch
a
ν . (8.102)

The Riemann tetrad components satisfy,

ωab = γabcθ
c,

Ωab = 1
2R

a
bcdθ

c ∧ θd. (8.103)

Einstein’s equations in tetrad form are,

Rab − 1
2ηabR = Tab. (8.104)

As is well known in the literature, the Riemann tensor admits the decomposi-
tion,

Rabcd = Cabcd + R
12gabcd + Eabcd, (8.105)
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where, Cabcd is the conformal Weyl tensor, and,

gabcd = ηacηbd − ηadηbc,
Eabcd = gabf(dS

f
c),

Sab = Rab − 1
4ηabR. (8.106)

The transition between tensor and spinor quantities is made by contraction
with the connecting spinors τµAḂ which satisfy,

gµντ
µ
AĊτ

ν
BĊ = εAB ε̄ĊḊ.

The spinor dual one-forms θAḂ are defined by,

θAḂ = τµ
AḂ dxµ = θaτa

AḂ ,

where the tetrad connecting spinors are chosen such that,

ds2 = det θAḂ ,

=

[
θ0 θ2

θ3 θ1

]
.

We now introduce a spin dyad ζAa = (φA, ψA), with φAψA = 1. The null
tetrad can be written as,

lµ = τµ
AḂφAφ̄Ḃ , mµ = τµ

AḂφAψ̄B ,

nµ = τµ
AḂψAψ̄Ḃ , m̄µ = τµ

AḂψAφ̄Ḃ , (8.107)

The spin coefficients corresponding the 24 Ricci rotation coefficients are given
by,

Γabµ = ζAa;µζ
A
b. (8.108)

The 12 complex spin coefficients may be arranged in three groups of four, ac-
cording to the scheme,

Aµ = Γ00µ = {κ, ρ, σ, τ},
Bµ = Γ01µ = {ε, α, β, γ} = Γ10µ,

Cµ = Γ11µ = {π, λ, µ, ν}, (8.109)

The spin connection ΓABµ which gives rise to the covariant derivative of spinors,
is related to the spin coefficients by,

Γabµ = ΓABµζ
A
aζ
B
b.

Following equation 8.84, we define,

σab
A
B = σ[a

AĊσb]BĊ , (8.110)
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which we use to construct the connection and curvature spinors,

ΓAB = ωabσab
AB,

ΩAB = Ωabσab
AB. (8.111)

We can now write the spinor version of the equations of structure, which not
surprisingly, have a very similar appearance,

d θAḂ + ΓAC ∧ θCḂ + Γ
Ḃ

Ċ ∧ θ
AĊ = 0,

d ΓAB + ΓAC ∧ ΓCB = ΩAB ,

dΩAB − ΩAC ∧ ΓCB + ΓAC ∧ ΩCB = 0. (8.112)

As already discussed, if the coframes θa undergo a Lorentz transformation
θ̂a = Labθ

b, the spinor coframe undergoes a similarity transformation Q× Q̄ ∈
SL(2,C)× SL(2C),

θ̂AḂ = QAC θ
CḊQ̄Ḃ

Ḋ
.

In matrix notation, the connection and curvature spinors transform according
to,

Γ̂ = QΓQ−1 +QdQ−1,

Ω̂ = QΩQ−1. (8.113)

The spin connection ΓAB and the curvature spinor RABcd satisfy equations
analogous to 8.103

ΓAB = ΓABcθ
c = ΓACBḊθ

CḊ,

ΩAB = 1
2R

A
Bcd θ

c ∧ θd,

= 1
2R

AȦ
BḂCĊDḊ θCĊ ∧ θDḊ. (8.114)

We also have a decomposition of curvature spinor into irreducible components

RAȦBḂCĊDḊ = ΨABCD ε̄ȦḂ ε̄ĊḊ + Ψ̄ȦḂĊḊεABεCD

+ 1
12R[εACεBD ε̄ȦĊ ε̄ḂḊ + εABεCD ε̄ȦḊ ε̄ḂĊ ]

+ εABΦCDȦḂεĊḊ + εCDΦABĊḊεȦḂ , (8.115)

where,
ΦABĊḊ = Φ(AB)(ĊḊ) = ΦABĊḊ, (8.116)

is the traceless Ricci spinor, and,

ΨABCD = Ψ(ABCD) (8.117)

is the completely symmetric Weyl conformal spinor. Finally, the spinorial ver-
sion of Einstein’s equation takes the form,

ΦABĊḊ = 1
4 (TAĊBḊ + TBĊAḊ), T = T aa = R. (8.118)
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Equations 8.118 and 8.101 are called the Newman-Penrose (N-P) equations.
When written in detail in terms of the 12 spin coefficients, the (N-P) formalism
results in a formidable set of systems of coupled first order differential equations
consisting of 4 metric equations, 18 spin coefficient equations, and 8 Bianchi
identities. Fortunately, the spin coefficients have geometric interpretations that
motivate imposing conditions on the N-P equations that makes them tractable.
The Weyl spinor leads an elegant classification of so-called, algebraically special
space-times. The classification was originally done by Petrov, but it is now com-
monly known as the Cartan-Petrov-Pirani-Penrose classification. One starts by
writing the completely symmetric conformal spinor as,

ΨABCD = α(AβBγCδD). (8.119)

Each of the rank one spinors is associated with a null vector. The classification
is as follows,

1. Type I. Algebraically general - 4 distinct null directions.

2. Type II. Two null directions coincide.

3. Type D. There are two pairs of null directions that coincide.

4. Type III. Three principal directions coincide.

5. Type N. All principal directions coincide - also called Type Null.

The 1962 seminal paper by Newman and Penrose [24] is noted by the elegant
proof in terms of the spin coefficients, of the Goldberg-Sachs theorem. The
theorem states that a non-flat, vacuum space-time is algebraically special, if,
and only if, it contains a null geodesic congruence that is shear-free; that is,
there is a null vector with κ = 0 and σ = 0.

The literature on applications of the N-P formalism is huge. A Google search
on “Newman-Penrose Spin Coefficients” yields over 54,000 results. We provide
here a very simple example.

8.3.1 Example Consider the Vaidya metric in Eddington-Finkelstein coor-
dinates 6.75. A null tetrad can be adapted to this metric by choosing

lµ =
∂

∂r
,

nµ =
∂

∂u
− 1

2
(1− 2m

r )
∂

∂r
,

and

mµ =
1

r
√

2

[
∂

∂θ
+

i

sin θ

∂

∂φ

]
,

mµ =
1

r
√

2

[
∂

∂θ
− i

sin θ

∂

∂φ

]
.

Thus, we have an associated spin dyad as in equation 8.107

lµ → φAφ̄Ḃ , nµ → ψAψ̄Ḃ , mµ → φAψ̄Ḃ .

The only non-zero component of the curvature spinor is

Ψ2 = ΨABCD φAφBψCψD = −m(u)

r3
, (8.120)
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which is consistent with the space being of Petrov type D. By a clever idea of
allowing r to assume complex valued, and then performing a complex rotation,
Newnman and Janis were able to obtain the Kerr metric [25].

8.3.1 The Kerr Metric

When Einstein first introduced the theory of general relativity in 1915, it
took but two months for Schwarzschild to develop a solution to the vacuum
field equations. It took another 45 years to find a Ricci-flat solution describing
an axially symmetric, rotating, space-time. The solution was found by R. Kerr
in 1963. A space-time is said to be in Kerr-Schild form, if the line element can
be written as

gµν = ηµν +H lµlν , (8.121)

where η is the flat metric, H is a scalar function, and lµ a null vector with
respect to g and η. It is easy to show that the Schwarzschild metric can be
written in Kerr-Schild form. Start with the Eddington-Finkelstein coordinates,

ds2 = 2drdu+ [1− 2m
r ] du2 − r2dθ2 − r2 sin2 θ dφ2.

Since
(du+ dr)2 = du2 + 2dudr + dr2.

we can solve for 2du dr and substitute into the metric. We get

ds2 = − 2m
r du

2 − dr2 − r2dθ2 − r2 sin2 θ dφ2 − (du+ dr)2.

Now, we let x0 = u+ r. The transformation yields

ds2 = −(dx0)2 − dr2 − r2dθ2 − r2 sin2 θ dφ2 − 2m
r (dx0 − dr)2,

which is the desired Kerr-Schild form with the Minkowski metric written in
spherical coordinates. In Boyer-Lindquist coordinates the Kerr metric is given
by (See [21])

ds2 =
∆

ρ2
(dt−a sin2 θ dφ)2− ρ

2

∆
dr2−ρ2 dθ− sin2 θ

ρ2
[(r2 +a2) dφ−a dt]2, (8.122)

where,

∆ = r2 − 2mr + a2; a2 < m2,

ρ2 = r2 + a2 cos2 θ. (8.123)

Since the metric coefficients do not depend on t and φ, the quantities ∂t = ∂
∂φ

and ∂φ = ∂
∂φ are Killing vector fields, and we get associated conserved quantities

E and L as in the case of the Schwarzschild space-time. When a = 0 the line
element immediately reduces to the Schwarzschild metric. When m = 0, the
cross terms with (dt dφ) cancel out and one gets

ds2 = dt2 − r2 + a2 cos2 θ

r2 + a2
dr2 − (r2 + a2 cos2) dθ2 − (r2 + a2) dφ2.
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This one is not obvious, but it is the flat Minkowski metric in oblate spheroidal
coordintates, that is, one for which the spatial part is the R3 metric based on
ellipsoids

x2

r2 + a2
+

y2

r2 + a2
+
z2

r2
= 1, (8.124)

parametrized by the transformation

x =
√
r2 + a2 cosφ sin θ,

y =
√
r2 + a2 sinφ sin θ,

z = r cos θ.

The metric blows up at ρ2 = 0 and ∆ = 0. When ρ2 = 0 we have

r = 0, θ =
π

2
.

This constitutes a real singularity of the curvature. On the other hand, it
can be shown that the singularity ∆ = 0 can be be removed by a change
of coordinates, so this singularity is more like the apparent singularity of the
Schwarzschild metric at r = 2m. The quadratic equation ∆ = 0 has solutions

r± = m±
√
r2 − a2.

Thus the space-time is divided into three regions,

R1 : where r+ < r,

R2 : where r− < r < r+,

R3 : where r < r−,

We live in region R1. The boundaries at r± represent an outer and an inner
event horizon respectively. A time-like particle can cross from region R1 to R2

and from R2 to R3, but not the other way around. As such, r+ is the real
event horizon. A new feature that is not present in the Schwarzschild metric
is a region called the ergosphere which lies outside the event horizon in inside
the oblate region defined by g00 = 0. Particles entering the ergosphere from
region R1 are subjected to frame-dragging by the rotation of the black hole. By
inspection of the metric 8.122, we see that,

g00 =
∆

ρ2
− a2 sin2 θ

ρ2
,

=
r2 − 2rm+ a2 cos2 θ

ρ2
.

Thus, the outer boundary of the ergosphere is given by the root

r+
e = m+

√
m2 − a2 cos2 θ, (8.125)
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Fig. 8.4: Ergosphere

The rotational frame-dragging is caused by the change at this boundary of the
Killing vector field ∂t from being time-like to space-like. In Boyer-Lindquist
coordinates it is relatively easy to compute the connection forms. We choose
an orthonormal coframe

θ0 =

√
∆

ρ
(dt− a sin2 θ dφ),

θ1 =
ρ√
∆
dr,

θ2 = ρ dθ,

θ3 =
sin θ

ρ
[(r2 + a2 )dφ− a dt], (8.126)

so that

ds2 = (θ0)2 − (θ1)2 − (θ2)2 − (θ3)2.

The idea is the same as in previous connection computations, noting that the
connection forms are antisymmetric. We take the exterior derivatives of the
coframe forms and express the results in terms of the basis. We read the
connection coefficients from the first Cartan structure equation, and check for
consistency for possible missing terms. The presence of cross terms makes the
calculation a bit more challenging and requires some finesse. We compute the
quantities we need as we go along, starting with,

ρ dρ = r dr − a2 cos θ sin θ dθ,

d∆ = 2(r −m) dr.
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The order of the computation is not really important, so we might as well begin
with θ1 and θ2, that are the easiest. We have

d θ1 = d ( ρ√
∆

) ∧ dr,

=
√

∆ dρ−ρ d
√

∆
∆ ∧ dr,

= 1
∆ [
√

∆
ρ (r dr − a2 cos θ sin θ d θ)] ∧ dr,

= − 1
ρ
√

∆
a2 cos θ sin θ

θ2

ρ
∧
√

∆
ρ θ1,

=
a2 cos θ sin θ

ρ3
θ1 ∧ θ0.

Continuing,

d θ2 = dρ ∧ dθ,

=
1

ρ
r dr ∧ dθ,

=
r

ρ

√
∆

ρ
θ1 ∧ 1

ρ
θ2,

= −r
√

∆

ρ3
θ2 ∧ θ1.

Comparing these differentials with the structure equations

d θ1 = −ω1
j ∧ θj , d θ2 = −ω2

j ∧ θj ,

we infer that

ω1
2 = −a

2 cos θ sin θ

ρ3
θ1 − r

√
∆

ρ3
θ2.

However, we should not be surprised if the expressions above for d θ1 and d θ2

have other terms that either add to zero or wedge to zero. The other two
structure equations are more elaborate. We have

dθ0 = d (
√

∆
ρ

) ∧ (dt− a sin2 θ dφ) +
√

∆
ρ

(−2a sin θ cos θ dθ ∧ d φ),

= ρ d
√

∆−
√

∆ d ρ
ρ2

∧ ρ√
∆
θ0 − 2a

√
∆

ρ
sin θ cos θ dθ ∧ d φ,

=
1

ρ2
[ρ

(r−m)√
∆

dr −
√

∆
ρ

(r dr − a2 cos θ sin θ)] ∧ ρ√
∆
θ0 − 2a

√
∆

ρ
sin θ cos θ dθ ∧ d φ,

=
1

ρ2
[
ρ(r−m)√

∆
−
√

∆r
ρ

] dr ∧ ρ√
∆
θ0 +

1

ρ3
(a2 cos θ sin θ) θ2 ∧ θ0 − 2a

√
∆

ρ
sin θ cos θ dθ ∧ d φ,

= [
ρ2(r−m)−r∆

ρ3
√

∆
] θ1 ∧ θ0 +

1

ρ3
(a2 cos θ sin θ) θ2 ∧ θ0 − 2a

√
∆

ρ
sin θ cos θ dθ ∧ d φ.

For the last term in the right, we will need to express dφ in terms of the coframe.
This is easily done by eliminating dt and solving for dφ from the equations for
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θ0 and θ3.

dt = ρ√
∆
θ0 + a sin2 θ dφ,

θ3 = sin θ
ρ [(r2 + a2) dφ− aρ√

∆
θ0 − a2 sin2 θ dφ],

= sin θ
ρ [ρ2 dφ− aρ√

∆
θ0],

dφ = 1
ρ sin θ θ

2 + a
ρ
√

∆
θ0.

Substituting for dφ into the last equation for dθ0, we get after some simplifica-
tion

dθ0 =

[
ρ2(r −m)− r∆

ρ3
√

∆

]
θ1∧θ0− a

2 cos θ sin θ

ρ3
θ2∧θ0− 2a

ρ3

√
∆ cos θ (θ2∧θ3). (8.127)

We proceed to compute dθ3 in a similar manner.

dθ3 = d (
sin θ

ρ
) ∧ [(r2 + a2) dφ− a dt] +

sin θ

ρ
2r dr ∧ dφ,

=
ρ cos θ dθ − sin θ dρ

ρ2
∧ ρ

sin θ
θ3 +

2r sin θ

ρ
dr ∧ dφ,

=
1

ρ sin θ
[ρ cos θ dθ − sin θ dρ] ∧ θ3 +

2r sin θ

ρ
dr ∧ dφ.

The rest of the computation is completely straight-forward. We substitute the
differentials dθ, dρ, dr and dφ in terms of the coframe, and simplify. Notice that
we do no need to solve for dt. We leave it to the reader to verify the result,

dθ3 =
2ar sin θ

ρ3
θ1 ∧ θ0 +

r
√

∆

ρ3
θ1 ∧ θ3 +

cos θ

ρ3 sin θ
(r2 + a2) θ2 ∧ θ3. (8.128)

Anticipating possible missing terms required for consistency, we split the θ2∧θ3

in the equation 8.127 for dθ0 as

−2a cos θ

ρ3
θ2 ∧ θ3 = −a cos θ

ρ3
θ2 ∧ θ3 +

a cos θ

ρ3
θ3 ∧ θ2,
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and do the same for the θ1 ∧ θ0 in the expression 8.128. Together with 8.3.1,
we can now read all the independent connection forms

ω0
1 = [ρ

2(r−m)−r∆
ρ3
√

∆
] θ0 − ar sin θ

ρ3
θ3,

ω0
2 = − (a2 cos θ sin θ)

ρ3
θ0 +

a cos θ
√

∆

ρ3
θ3,

ω0
3 =

a cos θ
√

∆

ρ3
θ2 − ar sin θ

ρ3
θ1,

ω1
2 = −a

2 cos θ sin θ

ρ3
θ1 − r

√
∆

ρ3
θ2,

ω1
3 = −ar sin θ

ρ3
θ0 − r

√
∆

ρ3
θ3,

ω2
3 = − cos θ

ρ3 sin θ
(r2 + a2) θ3 − a cos θ

√
∆

ρ3
θ0 (8.129)

The only term above that could not be read immediately from the computed
differentials is the second term in ω2

3. Here, the θ0 term comes from a modifi-
cation of the formula for dθ2 that is required for consistency with ω2

0 = −ω0
2.

The computation of the curvature form requires no finesse; it is just a lengthy
“plug and chug” calculation that presently is not a task for human beings.
With the use of a computer algebra system such as Maple or Mathematica,
one can verify that the curvature is Ricci-flat. For a full discussion of physical
implications of the Kerr geometry, see Misner, Thorne and Wheeler [21].

8.3.2 Eth Operator

One of the most pulchritudinous results arising from the N-P formalism,
was the serendipitous discovery by Newman and Penrose of a characterization
of asymptotically half-flat space-times in terms of an operator called eth. The
operator acts on a space consisting of spin-weighted functions on a sphere. A
function η on a sphere has spin weight s if it transforms as,

η′ = eisψη, (8.130)

under a rotation about the north pole. The spin-weight is constrained to be
a 1

2 -integer. Here we are only interested in the nature of the operator in its
relation to representations, but to provide some historical context, we say a few
words about half-flat space times. The simplest way to introduce the notion of
half-flat is to consider the good cut differential equation,

ð2Z(ζ, ζ̃)Z(ζ, ζ̃) = σ0(Z, ζ, ζ̃), (8.131)

where the eth operator is defined by,

ðη = 2P 1−s ∂

∂ζ
(P sη),

ðη = 2P 1+s ∂

∂ζ̄
(P−sη). (8.132)



314 CHAPTER 8. CLASSICAL GROUPS IN PHYSICS

Here, P is the conformal factor in the Fubini-Study metric 5.63,

P = 1
2 (1 + ζζ̄),

and σ0(Z, ζ, ζ̃) is some complex valued function (which in context represents
the asymptotic value of the shear spin index σ). The idea in the N-P formalism
is that if one could solve this equation, then one could construct an (asymptot-
ically) half-flat space-time. The definition of a half-flat space-time starts with
space-time analytically continued into the complex. Then the components of
the spinor image of the Weyl tensor,

Cabcd 7→ ΨABCD ε̄ȦḂ ε̄ĊḊ + Ψ̃ȦḂĊḊεABεCD (8.133)

are now independent; here indicated by replacing Ψ̄ by Ψ̃. The two components
are the self-dual, and the anti-self-dual parts of the spinor. The space is half-
flat, if it is Ricci flat, and,

Ψ̃ȦḂĊḊ = 0 (8.134)

The reason a sphere S2 enters into the picture can be motivated by a simple ge-
ometrical argument. If space time were spherical, then null rays would converge
to a single point at infinity. Conformal null infinity in this case can be viewed as
the intersection of a hyperplane with the 4-sphere at the north pole. However,
if the space is Lorentzian and asymptotically flat, then conformal infinity looks
like a hyperplane intersecting with a hyperbolic surface, which is a cone with
topology S2 ×R.
In spherical coordinates, the eth operator acting on a function η of spin weight,
takes the tantalizing form

ðη = −(sin θ)s
[
∂

∂θ
+

i

sin θ

∂

∂φ

]
(sin θ)−sη,

ðη = −(sin θ)−s
[
∂

∂θ
− i

sin θ

∂

∂φ

]
(sin θ)sη. (8.135)

We have,

(ðη)′ = ei(s+1)φη,

(ðη)′ = ei(s−1)φη, (8.136)

so these act as raising and lowering operators of spin weight. One can also
verify that,

(ðð− ðð)η = 2sη. (8.137)

The eigenfunctions of ððη = ð2η = 0 are called spin-weighted spherical harmon-
ics and are denoted by sYlm(θ, φ), where |s| < l. Some authors have pointed
out that these entities were previously known to Gelfand. In the case s = 0, the
operator ð2 is just the Laplacian, so the eigenfunctions are spherical harmonics.
Since ð and ð raise and lower the spin weight respectively, the spin-weighted
spherical harmonics can be obtained by successive applications of the operators
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to spherical harmonics. The elegant formulas were derived by Goldberg, et-al
[10].

ð2
sYlm = −(l − s)(l + s+ 1) sYlm,

ð sYlm =
√

(l − s)(l + s+ 1) s+1Ylm,

ð sYlm = −
√

(l + s)(l − s+ 1) s+1Ylm.

Applying these equations iteratively, one can show that

sYlm =


√

(l−s)!
(l+s)!ð

sYlm if 0 ≤ s ≤ l,√
(l+s)!
(l−s)! (−1)sð−sYlm if −l ≤ s ≤ 0

. (8.138)

In the context of representation theory of the rotation group, the main result
is that Wigner Dl

mm′ matrix elements can be neatly expressed after a messy
computation, by the neat formula [10],

Dl
−ms(φ, θ,−ψ) = (−1)m

√
4π

2l + 1
sYlm(θ, φ)eisφ (8.139)

In 1985, T. Dray [7] proved that with a appropriate choice of spin gauge, spin
weighted spherical harmonics were the same as the monopole harmonics intro-
duced by Wu and Yang as solutions of a semiclassical electron in the field of a
Dirac monopole. This is not surprising since, as we will see in the next chapter,
the Dirac monopole is associated with a connection on a U(1) Hopf bundle over
S2, whereas the transformation law for spin- weighted function is basically a
gauge transformation in such a bundle.

8.4 SU(3)

The SU(3) group was in introduced by Gell-Mann in 1961, as a candidate
for a symmetry gauge group to accommodate quark “flavors”. In the language a
particle physics in this theory, Hadrons are made up of three quarks with flavors
called: up, down and strange (u, d, s), at a time when particles with “color”
attributes of charm, top, or bottom (c, t, b) were unknown. If one denotes a
flavor state by,

|ψf 〉 =

ud
s

 ,
The isospin action by g ∈ SU(3) is simply given by |ψf 〉 7→ g|ψf 〉. The Lie
algebra su(3) consists of 3 × 3 traceless, Hermitian matrices. The dimension
of the special unitary group SU(n) is n2 − 1, so su(3) has 8 generators. Gell-
Mann chose for these generators, the closest extension of Pauli matrices. The
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8 Gell-Mann matrices are, (see Georgi [9])

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

0 −i 0
i 0 0
0 0 0

 ,
λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,
λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 0i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 , (8.140)

Anticipating a factor of 2i as in the case of Pauli matrices, we use the standard
convention of denoting the structure constants by,

[λj , λk] = 2if ijkλi. (8.141)

Effectively, the matrices are normalized so that,

Tr(λjλk) = δjk

It is customary to set
Tj = 1

2λj

The structure constants turn out to be completely antisymmetric, so, modulo
permutations, there are only 8 independent ones. The upper 2 × 2 block of
{λ1, λ2, λ3} are just the Pauli matrices, so this set constitutes an su(2) subal-
gebra, and we have

f ijk = εijk

whenever all indices are less than or equal to 3. The isotopic spin SU(2) algebra
generated by the exponential map of these generators, result in rotations of the
flavor state |ψf 〉 that leave s invariant. Defining,

τ+ =
√

3λ8 + λ3,

τ− =
√

3λ8 − λ3,

one can also identify two more su(2) subalgebras generated by {λ4, λ5, τ+} and
{λ6, λ7, τ−} respectively. The rest of the non-zero structure constants are easily
computed using symbolic manipulation software. The results are,

f147 = f246 = f257 = f345 = 1
2 ,

f156 = f367 = − 1
2 ,

f458 = f687 = 1
2

√
3.

A concise formula for the structure constants is given by,

fijk = − i
4 Tr(λi[λj , λk]) (8.142)
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Another useful fact is the formula for the anti-commutators,

{λj , λk} = 4
3δjkI + 2dijkλk, where,

dijk = 1
4 Tr(λi{λj , λk}).

The Killing form,
gjk = f ijmf

m
ki = 3δjk,

modulo the usual problematic factor of 2i, is non-degenerate and positive defi-
nite, as expected from a semi-simple, compact group. The Cartan subalgebra is
spanned by h3 = T3 and h8 = T8 which commute with all the other generators.
Thus, the subalgebra is of rank 2 and there are 2 Casimir operators. Since the
generators of the Cartan subalgebra are already in diagonal form, is is easy to
find the eigenvectors and corresponding weights [9],[

1
0
0

]
7→ ( 1

2 ,
1

2
√

3
),

[
0
1
0

]
7→ (− 1

2 ,
1

2
√

3
),

[
0
0
1

]
7→ (0,− 1√

3
).

To find the roots we need generators that take one weight to another. From

Fig. 8.5: Root Diagram A2 = SU(3)

lessons learned from su(2) we take as raising and lowering operators,

1√
2

(T1 ± iT2),
1√
2

(T4 ± iT5),
1√
2

(T6 ± iT7).

A straight-forward computation of the commutators with the generators of the
Cartan subalgebra gives,

[T3, (T1 ± iT2)] = ±((T1 ± iT2),

[T8, (T1 ± iT2)] = 0,

So, we have found two roots, (±1, 0). Continuing the computation for the next
set of ladder operators, we get,

[T3, (T4 ± iT5)] = ±1

2
((T4 ± iT5),

[T8, (T4 ± iT5)] = ±
√

3

2
((T4 ± iT5),
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so the next pair of roots are (± 1
2 ,±

√
3

2 ). Finally, the commutators for the third
set of ladder operators, leads to,

[T3, (T6 ± iT6)] = ∓1

2
((T6 ± iT7),

[T8, (T6 ± iT6)] = ±
√

3

2
((T6 ± iT6),

giving the last pair of roots (∓ 1
2 ,±

√
3

2 ). The complexification of su(3) is sl(3,C).
In Cartan’s classification of semisimple Lie algebras, the root system for sl(n+
1,C) is called An.

In the root diagram A2 = su(3), the roots form a regular hexagon with two
roots at the center, as shown in figure 8.5. We refer the reader to the famous
book by Georgi [9] for a full discussion of representations of groups in Physics.



Chapter 9

Bundles and Applications

9.1 Fiber Bundles

The late 1970’s was an exciting time to be a graduate student at Berkeley.
At the time, the University had a powerhouse of some of the top, world-class
mathematicians in differential geometry and related fields, including, Chern,
Kobayashi, Wolf, Gilkey and Weinstein; a number of renowned general rel-
ativity researchers such as Taub, Marsden, and Sachs; as well as a battery
of visiting faculty and invited speakers at the frontiers of research. Prior to
1975, with the exception of Professor Sachs, who had a dual appointment in
the physics department, I don’t think I ever saw, either as an undergradu-
ate or as graduate student, a physics professor enter the math building or a
math professor walk the hallways of the physics building. It just so happened,
that on 1975, Belavin, Polyakov, Schwartz, and Tyupkin, published a paper on
pseudoparticle solutions to the Yang-Mills equations [3]. This so-called BPST
instanton, drew widespread attention in the physics community. The instantons
are extremals under a variational principle of the Yang-Mills Lagrangian, which
generalizes the electromagnetic Lagrangian 2.123, to non-Abelian Lie algebras.
The paper included a provocative discussion of topological properties such as
homotopy classes and a footnote referring to a particular equation as a Pontr-
jagin class. A. Trautman [37] is credited as the first mathematician to observe
that the BPST instanton (and Dirac’s monopole) corresponded to a connec-
tion on a Hopf bundle. The details will be presented in this chapter. In 1977,
Schwarz (apparently the correct spelling) used the Atiyah-Singer index theorem
to show that the number of instantons and zero fermion modes is given by some
topological invariant (8k − 3) [32]. Perhaps the inclusion of such heavy-duty
mathematics made some of the particle physicists a bit uncomfortable. I say
this because in 1977, when I. M. Singer was offered a position at Berkeley, his
seminars on the Penrose twistor programme and gauge theory got flooded with
non-Abelian gauge physicists including Mandelstam. The relevance of twistor
theory to gauge fields was first established by R. Ward in a brilliant short paper
[39] in which he showed that certain complex vector bundles related to CP3,
in twistor theory, could be used to generate self-dual gauge fields. This also
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drew the attention of algebraic geometers such as R. Hartshorne, working on
moduli spaces of vector bundles, The presence of Singer at Berkeley attracted
a slew of prominent visitors such as M. Atiyah, S. Yau, and later, A. Lich-
nerowicks. Atiyah and Singer became major contributors to the mathematical
formulation of Yang-Mills Theory; in particular, in a paper published in 1978,
[2], Atiyah, Hitchin and Singer computed the dimension of the moduli space
of irreducible, self-dual connections for Yang-Mills equations in 4-space for all
compact gauge groups. The dimension of this space for SU(2) is the topological
invariant (8k − 3) derived by Schwarz.

Among the physicists attending Singer’s lectures was a young researcher
named A. Hanson with whom I partnered to become the note-takers for the
seminar series. The section on Yang-Mills in these notes, is partly distilled from
my 1977-78 notes with Hanson on the lectures by Singer. A couple of years later,
Hanson, along with T. Eguchi and P. Gilkey, who introduced me to algebraic
topology, published a comprehensive work, in which among other things, they
announced the discovery of a new metric for a gravitational instanton [8]

We have already encountered several examples of fiber bundles of interest in
physics. The most fundamental of these are the tangent and cotangent bundles
and tensor product thereof. We have also discussed the Hopf bundle which is
endowed with a non-trivial topology. We present now a more formal approach
to fiber bundles, still keeping in mind that to try to make the material more
accessible to physicists, we occasionally might sacrifice a bit of rigor in favor of
simplicity.

9.1.1 Definition A smooth fiber bundle is a set ξ = {E,M, π, F} consisting
of manifolds E, M and F and a C∞ map π : E →M from E onto M satisfying
the following properties:

1. The map is locally trivial. This means that for every point p ∈ M , there
exists an open set U containing p, together with a diffeomorphism φ :
π−1(U) → U × F . We call Fp = π−1({p}) the fiber at the point p. We
allow the simpler notation Fp = π−1(p) for the fiber at p and

F |U = π−1(U) =
⋃
p∈U

Fp

for the fiber space over the set U . This part of the definition says that
locally, the bundle looks like a cross-product; that is, π−1(U) = U × F .
The pair {U, φ} is called a coordinate neighborhood or a coordinate patch,
or a local trivialization of the bundle.

2. The fiber space is glued in a smooth manner. More specifically, if {Ui, φi}
and {Uj , φj} are two coordinate neighborhoods with nonempty intersec-
tion and p ∈ Ui

⋂
Uj , then

φij = φ−1
i φj : Ui × F → Uj × F

is a diffeomorphism. The quantities φij are called transition functions.
The sets {Ui} constitute an open cover of M . (See figure 9.1).
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Fig. 9.1: Fiber Bundle

The manifold M is called the base space, E is called the total space or the
bundle space, and π the projection map. The notation

F → E
π−→M (9.1)

or simply
π : E →M

is also used, probably because it is easier to typeset. There is a common abuse
of language in calling E the bundle space, since the bundle is really the set ξ.
A trivial bundle is one that is a simple cross product, E = M × F . In that
sense, we could view R2 = R × R as a bundle with base space M = R and
fiber F = R. There would be no advantage to view R2 this way, but it is a
bundle anyway. The total space is the union of all the fibers, which locally does
look like a cross product, but globally it might have a non-trivial topology, as
in the case of the Hopf bundle 8.1.4. It is possible to start the treatment of
fiber bundles with topological spaces, in which case, the projection map would
be a continuous function, the coordinate maps homeomorphisms, and the base
space would have the quotient topology. These topological bundles can then be
given differentiable structures as above. In fact, it would be more natural to
treat this subject in terms of categories, morphisms, and functors, but we will
resist the temptation.

9.1.2 Example Let M = S1, I = [−1, 1] and E = S1×I. This trivial bundle
is just a cylinder with a circular base space and each fiber a copy of the interval
[−1, 1]. Topologically, we can construct the bundle by looking at the base space

Fig. 9.2: Möbius Band

as an interval, say [−π, π] with the end points identified. We glue the bundle by
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identifying the fibers at the endpoints, as suggested by the arrows pointing in
the same direction in the picture in the left, on figure 9.2. On the other hand, if
we identify the vertical edges in opposite direction as shown in rectangle on the
right, we get a strip with a twist, which is topologically equivalent to a Möbius
band. A smooth parametrization of this surface and a picture rendering the
surface is given in 5.1.

9.1.3 Definition A section s of a bundle ξ = {E,M, π, F} is a smooth map
s : M → E such that

π ◦ s = idM

This is the same concept introduced in the context of the tangent bundle for
which the sections are called vector fields (See figure 1.1). We use the same
notation Γ(E) for the set of all smooth sections. For the tangent bundle, the
fibers are copies of Rn, so they are vector spaces of dimension n. In such a
case we call the bundle a vector bundle. The tangent bundle TRn is a trivial
bundle. If p ∈ U ⊂ Rn, then π−1U ∼= U ×Rn and the coordinate patch maps
are,

φ :

(
p, a1 ∂

∂x1
, . . . , an

∂

∂xn

)
7→ (p, a1, . . . , an).

This slightly more formal point of view is consistent with our earlier definition
of a tangent vector. A vector bundle has more structure that a run-of-the-
mill fiber bundle. If (p, f) is an point in the bundle in the intersection of two
coordinate patches {Ui, φi} and {Uj , φj}, the transition functions satisfy,

φij = (p, ϕij(p)f),

where ϕij(p) ∈ GL(n,R)1 gives a linear isomorphism on the fibers. For the
tangent bundle, this is yet another way of saying that if we change coordinates
near p, the components of a tangent vector at p change by an action of an
element ofGL(n,R) represented by the Jacobian. If the fibers are k-dimensional
with a GL(k,R) action on the fibers, we just say that the vector bundle is k-
dimensional, even though the real total dimension is (n+ k). A vector bundle
of dimension 1 is called a line bundle. The normal bundle of the sphere S2 in
R3 would be an example of a line bundle. Since the fibers of vector bundles are
vector spaces and every vector space has a 0 vector, there is a special section
s such that s(p) = (p, 0); this is called the zero section. This is a trivial global
section in all vector bundles. The set of all sections of a vector bundle has
a natural structure of a vector space, in which the zero-section is the zero-
vector. There is no problem finding non-singular global sections of the tangent
bundle T (Rn). However, for submanifolds M of Rn, there might be topological
obstructions to the existence of vector fields that are non-zero everywhere. For
example, the reader may be acquainted with the theorem that one can not
“comb” a hairy sphere S2. As proved by Poincaré, the obstruction in this
case is the Euler characteristic which would need to vanish, but for the sphere,
χ(S2) = 2.

1Again, we adopt this notation with reluctance, although is common in the literature. The
quantities ϕij(p) are matrix-valued, so they really should be written as ϕij(p)
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9.1.4 Definition A covering space of a space M is a bundle ξ = {E,M, π, F}
in which every point p ∈ M , has a neighborhood U ⊂ M , such that π−1(U),
is the disjoint union of sets Vk, each homeomorphic to U . In other words, the
fibers of U are discrete. Here, π is a local homeomorphism and M has the
quotient topology.

9.1.5 Example Most likely, the first examples of covering spaces students
encounter in a course in algebraic topology are associated with the circle S1.
The map π : S1 → S1 given by

π(eiθ) = einθ, n ∈ Z+

gives an n-sheet covering of S1 for each positive integer n. One can envision
this covering as a rubber band folded into n loops around a cylinder. The
continuous homomorphism π : R→ S1 given by

π(t) = eit

is a covering of S1 by the real line. A covering that is simply connected as it
is the case here, is called a universal covering space. This map is the starting
point in establishing that the fundamental group of S1, also called the first
homotopy group π1, is given by

π1(S1) ∼= Z

A differentiable manifold structure is not required in this example. All that is
needed is that S1 = R/Z is a topological group, R is simply connected, and
Z is a discrete subgroup of R. The homotopy equivalence classes are the loops
that have the same winding number. The additive group structure is given
adding the number of loops of two group elements.

9.1.6 Example The projective space RPn of lines in Rn+1

is defined by the quotient space of Sn obtained by identifying
antipodal points; that is, the two antipodal points of inter-
section of the sphere with a line through the origin. The
covering space of RPn is the real version of the Hopf bundle

π : Sn → RPn,

with fiber Z2. The group covering transformations consist of the identity and
the antipodal map. In this example

π1(RPn) ∼= Z2.

I have to thank professor P. Gilkey for motivating me to overcome the fear of
algebraic topology machinery, with his wonderful illustration of the above, for
the case n = 3. He showed up the first day of classes with a toy consisting of
two equilateral triangles, one large, one small. The triangles were connected at
corresponding vertices with three separate untangled strings. He set the large
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triangle on the table and flipped the small triangle in the air by half revolution.
He asked for a volunteer in a class of 5 students to untangle the strings only
allowing parallel translations of the small triangle. Clearly, it was not doable.
He reset the toy and then flipped the small triangle a full revolution. I got
lucky and untangled the strings almost immediately. He proceeded to illustrate
by combinations of half-turns and full-turns, until it was almost self-evident,
that there were only two possible outcomes. Of course, the key question of the
day was, how does one prove that? He explained that the deformations of the
shape of the strings by parallel motion were examples of homotopies; that a
rotation in space left two antipodal points on a sphere fixed; defined projective
space; and concluded that what we had here was a manifestation that the first
homotopy group of the projective space had two generators. Four weeks later
we had learned enough tools to prove the assertion.

9.1.7 Definition Let ξ = {E,M, π, F} and ξ′ = {E′,M ′, π′, F ′} be smooth
vector bundles. A vector bundle map is a pair of smooth maps fM : M → M ′

and f : E → E′, such that

1. The diagram 9.3 commutes, ,

Fig. 9.3: Bundle Map: fM ◦ π = π′ ◦ f.

2. The map induced by f on the fibers is a linear map.

The meaning of this commuting diagram is that fibers are mapped to fibers.
Indeed, if Fp = π−1(p) is a fiber at p ∈M , then,

(π′ ◦ f)(Fp) = (fM ◦ π)(Fp),

= (fM ◦ π)(π−1(p)),

= fM (p),

so that a point in the fiber of p ∈ U ⊂ M lands on a point in the fiber of
fM (p). Thus if makes sense to say that the map induced on the fibers needs
to be a linear map of vector spaces. More specifically, if (p, v) ∈ E, then
f(p, v) = (fM (p), T (p) · v), where T : U →∈ L(F, F ′) gives a linear map T (p)
from the fiber Fp to the fiber F ′fM (p). If these linear maps are vector space
isomorphisms and fM is a diffeomorphism, the bundle map is called a vector
bundle isomorphism. In this case, the two bundles are essentially the same.

9.1.8 Definition Pull-back bundle
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Let π : E → M be a vector bundle with fiber F and let f : M ′ → M be a
smooth map. We can define a pull-back bundle denoted by f∗π : f∗E → M ′

by assigning the fiber Fp′ to each point p′ ∈M ′, the corresponding fiber Ff(p′)

at p = f(p′). More precisely, if v ∈ E, then

f∗E = {(p′, v) ∈M ′ × E | f(p′) = π(v)}, f∗π(p′, v) = p′ (9.2)

It clear that f∗E ⊂ M ′ × E is locally trivial, as it should be. If {Ui, φi} is a
cover of π : E → M by coordinate patches, then {f−1(Ui)} is a cover of M ′

with transition functions f∗φij(p
′) = φij(p). if,

M ′′
g−→M ′

f−→M

then,
(f ◦ g)∗E ∼= f∗(g∗E)

This should elicit memories of the properties of the pull-back of differential
forms 2.68.
One of the main application of pull-back bundles is the interesting relation to
homotopy. Recall from definition 7.1.16, that two maps f, g : M ′ → M are
called homotopic if there exist a map φ : M ′ × [0, 1]→M , such that

a) φ(p′, 0) = f(p),
b) φ(p′, 1) = g(p).

The main theorem in this regard is that if f and g are homotopic, then the
pull-back bundles f∗E ∼= g∗E are isomorphic.

9.1.9 Corollary Let M ′ = M = be a contractible space and suppose the
homotopy is a deformation retract (see 7.1.17),

φt(p) = φ(p, t) = tp.

Then the theorem says that E = f∗E ∼= g∗E = M ×F , which proves that if M
is contractible, then E is trivial.

9.2 Principal Fiber Bundles

A smooth principal fiber bundle (PBF) is essentially a fiber bundle in which
the fibers are Lie groups, or manifolds on which there is a free and transitive
action by a Lie group . In that sense, one can view the base space as the
parameter space for a family of fibers F where at any point p in the base
space, the fiber Fp is diffeomorphic to a Lie group. More formally, we have the
following definition

9.2.1 Definition Principal fiber bundle
A smooth principal fiber bundle is a set ξ = {E,M, π, F,G}, where F → E

π−→
M is a fiber bundle, and G is a Lie group acting on E freely along the fibers.

As a reminder, G acts on E on the right, if there exists a smooth map
µ : E × G → E given by (b, g) 7→ bg. The action is free along the fibers if the
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only element that acts as an identity is the identity and the action is transitive
if any two points on the same fiber are connected by an element of the group.
Thus, if the action is free and transitive, the fibers are diffeomorphic to the
orbits of the group. This means that the bundles

E
id−−→ E,

π ↓ pr ↓

M
'−−→ E/G

are isomorphic. Here, pr is the natural projection of E onto its cosets.

9.2.2 Example Bundle of Frames

Fig. 9.4: Bundle of Frames

,
One of the most important principal fiber bundles is the bundle of frames.

We hope that the following discussion does not obscure simplicity for the sake
of formalism. The bundle of frames is the structure one gets by attaching
to each point on a manifold, the space of all possible frame fields of tangent
vectors. The structure group is Gl(n,R), which acts on the fibers at each point
on the manifold, by matrix multiplication that changes one frame into another.
Parallel transport of vectors and frames on the manifold, correspond to choosing
a horizontal subspace of the tangent space of the bundle. Choosing a horizontal
subspace in the bundle is then equivalent to choosing a connection.

9.2.3 Definition Let M be a smooth manifold of dimension n, and let
{(φi, Ui)} be an atlas of coordinate charts covering M . As usual, we label the
coordinates of p ∈ Ui as (x1, . . . , xn). The frame bundle B(M) is defined as the
bundle π : B(M)→M , where

B(M) = {(p, e1, e2, . . . , en) : p ∈M,β = (e1, e2, . . .) is a basis for Tp(M).}

The projection map π is given by

π : F (M)→M,

(p, e1, . . . en)
π−→ p.
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Let (φ,U) be a coordinate chart with coordinates (x1, . . . , xn), with U = π−1U .
As shown in figure 9.4, we can lift the chart in M

φ : U → Rn

to a chart in B(M),

φ : U → Rn ×Gl(n,R) ' Rn+n2

,

as follows. Let {∂i = ∂
∂xi } be the standard basis for the tangent space TpM ,

associated with the coordinates p = (x1, . . . , xn). Let b ∈ B(M) be a point
with coordinates

b = (p, e1, . . . , en)

on the fiber Fp. Then, as shown in equation 3.1, there exists a matrix A ∈
Gl(n,R), with

ei = Aji∂j

Matrix multiplication by A is on the right, but, as in 3.1, we choose to write
the equation as above, to make it clear that ∂i is not acting as a differential
operator on the components of A. Thus, b ∈ Fp can be written as

b = (p,Aij
∂

∂xi
).

The bundle coordinate patch on U is defined by

φ
U

(p, e1, . . . , en) = (p,Aij)

Here, we identify the matrix A ∈ Gl(n,R) with a point in Rn2

, where the

coordinates in Rn2

are given by the entries in the column vectors of A. The
standard coordinates of Gl(n,R) are given by the matrices Xi

j that have a 1
entry in the ith row, jth column, and a 0 entry everywhere else.
The right action µ : B(M)×Gl(n,R)→ B(M) along the fibers is given by

µ : (b, g)→ bg = (p, fi = ej g
j
i); g ∈ Gl(n,R).

Given two overlapping charts in B(M)

φi : π−1(Ui)→ Ui ×Gl(n,R),

φj : π−1(Uj)→ Ui ×Gl(n,R).

with transition functions φij on U i ∩ U j , given by φij = (φ)−1
i φj . The group

action on the fibers satisfies,

(bg1)g2 = b(g1g2).

The atlas (φi, U i) thus gives B(M) the structure of a differentiable manifold.
A local section of the bundle s

U
∈ Γ(B(m))) represents a smooth choice of a

family of frames at points in U , with π ◦ s
U

= id.



328 CHAPTER 9. BUNDLES AND APPLICATIONS

9.2.4 Example Let G be Lie group and H ⊂ G a compact subgroup. Then
π : G → G/H, where π is the projection map onto the orbit space, is an H-
bundle. This is one of the early results in the theory of fiber bundles, first
proved by H. Samelson in 1941.

9.2.5 Example The projective space fibration
Recall that the complex projective space CPn is the quotient space Cn/ ∼,
where a, b ∈ Cn are equivalent, a ∼ b, if there exists a c ∈ S1 such that a = bc.
That is, CPn is the space of lines through the origin. Then.

S2n+1 S1

−−→ CPn

is a principal U(1) bundle. The special case for n = 1 is the ubiquitous Hopf
map 8.32.

9.2.6 Example The SO(n) bundle
The group of special orthogonal matrices

SO(n) = {A ∈Mn×n(R) : A−1 = AT ,detA = 1}

acts transitively on the unit sphere Sn−1 ⊂ Rn. The subgroup that leaves the
north pole fixed, that is, the isotropy subgroup of the point e1 = (1, 0, . . . , 0),
is the set of matrices of the form

A =

[
1 0
0 B

]
, B ∈ SO(n− 1).

Thus, SO(n)/SO(n − 1) is diffeomorphic to Sn−1. This, with the projection
map

π : SO(n)
SO(n−1)−−−−−−→ Sn−1

constitutes a SO(n− 1) bundle.

9.2.7 Example The U(n) bundle
The group of unitary matrices

U(n) = {A ∈Mn×n(C) : A−1 = A†}

acts transitively on the unit sphere S2n−1 ⊂ Cn. The subgroup that leaves the
north pole fixed, that is, the isotropy subgroup of e1 = (1, 0, 0, . . . , 0), is the set
of matrices of the form,

A =

[
1 0
0 B

]
, B ∈ U(n− 1).

Thus, U(n)/U(n− 1) is diffeomorphic to S2n−1. This, with the projection map

π : U(n)
U(n−1)−−−−−→ S2n−1
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constitutes a U(n − 1) bundle. The bundle structure above is also true if
the unitary groups is replaced by special unitary groups, which corresponds
to requiring the matrices A to have detA = 1, or equivalently, to picking an
orientation of the frames.

9.2.8 Example The Grassmannian
Let F denote, either of the vector spaces R or C. The space of orthonormal
k-frames in Fn is called the Stiefel manifold Vk(Fn). We can characterize the
Stiefel manifolds as the set of n× k matrices,

Vk(Fn) = {A ∈Mn×k : AA† = Ik}, (9.3)

where Ik is the k × k identity matrix. We interpret Ik as a matrix Ik =
[e1, e2, . . . , ek] of orthonormal basis vectors. Viewed as representing linear trans-
formations L(Fk,Fn), the matrices A have rank k.

Analogous to the construction of projective spaces, we say that two matrices
A,B,∈ Vk(Fn) are equivalent, A ∼ B, if there exists a k × k orthogonal (or
unitary in the complex case) matrix C such that A = BC. The Grassmannian
is defined as

Gr(k,Fn) = Vk(Fn)/ ∼ . (9.4)

The Grassmannian is the space of k-planes in Fn. In Rn the projection map

π : Gr(k,Rn)
O(k)−−−→ Vk(Rn), (9.5)

is a principal bundle with fiber group O(k). The group O(n) acts transitively
on Vk(R), and the isotropy subgroup of the n× k matrix

A =

[
Ik
0

]
.

consists of the matrices in O(n) of the form[
Ik 0
0 B

]
,

where B ∈ O(n− k). Thus, we have a diffeomorphism,

O(n)/O(n− k)
∼=−→ Vk(Rn),

and we can write the Grassmannian bundle as,

π : Gr(k,Rn)
O(k)−−−→ O(n)/O(n− k). (9.6)

Equivalently, we have

Gr(k,Rn) ∼=
O(n)

O(k)×O(n− k)
(9.7)
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In the complex and quaternionic vector spaces, we have

Gr(k,Cn) ∼=
U(n)

U(k)× U(n− k)
,

Gr(k,Hn) ∼=
Sp(n)

Sp(k)× Sp(n− k)
, (9.8)

The Grassmannian of lines in R3 is the projective space RP2 and the Grass-
mannian of planes is the same since to every line through the origin, there cor-
responds a unique orthogonal plane. Hence, the simplest Grassmannian that is
not a projective space is the space Gr(2,R4) of planes in R4, or equivalently,
the space of projective lines in CP3. The space CP3 of projective lines in C4

with a Hermitian metric of signature (+ + −−) is the base space for twistor
theory; in this case the symmetry group preserving the metric is SU(2, 2) which
is the double cover of the conformal group. It has been cited by R. Penrose
[29], that the geometrical foundation for the theory can be traced back to the
work of Plücker and Klein on subspaces of planes. In view of this historical
setting, we present a brief summary of the parametrization of two dimensional
subspaces of R4 used by Plücker. Given two vectors v = (v1, v2, v3, v4) and
w = (w1, w2, w3, w4), we can determine a plane by a linear map L(R2,R4)
with matrix representation given by a 4× 2 matrix A of rank 2, whose column
vectors are vT , and wT . That is,

A =


v1 w1

v2 w2

v3 w3

v4 w4

 ,
The Grassmannian Gr(2,R4) is the space of equivalence classes of such matri-

ces. Plücker coordinates pij are defined by the determinants of pairs of rows i
and j.

pij = viwj − vjwi,

=


0 p12 p13 p14

−p12 0 p23 p24,
−p13 −p23 0 p34,
−p14 −p24 −p34 0

 .
We may view the antisymmetric matrix P = (pij) as a element of the Lie
algebra so4, and the quantities (p12 : p13 : p14 : p34 : p24 : p23) as homogenous
coordinates in RP5 . A short computation using the antisymmetry property in
the definition of pij , yields,

p12p34 − p13p24 + p14p23 = 0

The square of this entity is equal to det(P ). This equation, up to a constant,
represents a quadric hypersurface Q in RP5. The permutation signs of the
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equation give a hint that there is a duality lurking somewhere, namely the
orthogonal subspaces. Introducing independent coordinates

p12 = X +R, p34 = X −R,
p13 = S − Y, p24 = S + Y,

p14 = Z + T, p23 = Z − T,

the equation becomes,

(X2 + Y 2 + Z2)− (R2 + S2 + T 2) = 0

By re-scaling the homogenous coordinates we can write the quadric Q as,

X2 + Y 2 + Z2 = 1, R2 + S2 + T 2 = 1.

Thus, Q has the topology of a torus S2 × S2.

9.2.9 Example S3

The U(n) bundle with n = 2 gives U(2)/U(1) ∼= S3.
The Grassmannian Gr(1,C2) ∼= CP1 ∼= S2, gives the bundle

U(2)/U(1)
U(1)−−−→ U(2)

U(1)× U(1)
,

S3 S1

−−→ S2.

This view of the Hopf bundle is the foundation for the argument that a three-
sphere S3 is homeomorphic to the union of two solid tori whose intersection are
their common boundaries with topology S1 × S1. As a static picture, figures
such as in 8.3 are as good as it gets in trying to visualize the union of the two
tori.

9.2.10 Definition Associated vector bundle
Let ξ = {E,M, π, F,G} be a PFB. Suppose there is a vector space V on which
G acts on the left. Let (e, v) ∈ E × V and g ∈ G. We can define an action on
the cross product E × V by

(e, v)g → (eg, g−1v),

Denote (E × V )/G by E ×G V . Then the natural projection map,

p : E ×G V
V−→M

defines a vector bundle called the associated vector bundle.

9.2.11 Example If E = B(M) is the bundle of frames, and V = Rn, the
associated vector bundle is the tangent bundle.
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9.3 Connections on PFB’s

We have noted earlier, that in a Riemannian manifold, there exists a unique,
torsion-free connection (see theorem 6.9). The metric on the manifold allows us
to define orthonormal frames, and the connection gives a prescription on how
to parallel transport tangent vectors and frames. We now present the bundle
viewpoint of connections. We will do this quite generally, but the reader should
keep in mind the bundle of frames as the model space. There is a learning curve
for the mathematical formalism, but the idea is very intuitive. We illustrate
this with bundle of frames. Given a point p on a manifold M , the fiber of the
bundle of frames F (M) consists of the point and all the frames at that point.
The action of the general linear group along the fibers, transforms one frame at
p onto another frame at p. Since the right action of the group is transitive and
effective, there is a natural way to identify a vertical direction in the tangent
space at a point b on the bundle, namely, a vertical tangent vector at b on
the frame bundle, corresponds to a frame at the point p in the base manifold.
If the frames are restricted to be orthonormal, the picture is the same, but
one has to reduce the group to the orthogonal group. Thus, the action of the
group tells us how move frames along the fibers, but it does not tell us how
to move a frame to the fiber of a nearby point on the manifold. This requires
more structure, namely a connection. In the case of Riemannian manifold, the
natural structure is provided by the Levi-Civita connection, which quantifies
how to parallel transport a frame along any particular curve. Lifting the curve
and the moving the frames along that curve in the bundle, would then yield
a section of the bundle that we could identify as a horizontal direction. Thus,
the basic idea of connection on a principal fiber bundle amounts to choosing
horizontal direction for the tangent space of the bundle.

Let ξ = {E,M, π, F,G} be a principal fiber bundle and let the coordinate
chart Ui give a local trivialization of the bundle

π−1(Ui)
φi−→ Ui ×G.

si ↑ ↗
Ui

Let p ∈ Ui and b ∈ Fp ⊂ π−1(Ui), so that π(b) = p. Here we use the notation

φi : π−1(Ui)→ Ui ×G,
φi(b) = (π(b), ϕi(p)).

On the overlap Ui ∩ Uj of two coordinate charts with

φi(b) = (π(b), ϕi(p)),

φj(b) = (π(b), ϕj(p)),

the transition functions ϕij = ϕ−1
i · ϕj give a map

ϕij : Ui ∩ Uj −→ G,

p :
ϕij−−→ ϕij(p)
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If

si : Ui → π−1(Ui),

sj : Uj → π−1(Uj),

are sections of the bundle over sets with Ui ∩ Uj 6= ∅, then on the overlap the
sections are related by

sj(p) = si(p)ϕij(p). (9.9)

9.3.1 Definition Let ξ = {E,M, π, F,G} be a principal fiber bundle and let
b ∈ Fp be a point on the bundle over the fiber Fp. A tangent vector Y ∈ TbE
is called vertical if

π∗Y = 0.

The vector space Vb of all such vectors is called the vertical subspace of TbE.
If X ∈ g, that action of the group G on E induces a fundamental vector field
Y = σ(X) as defined by equation 7.74. Such a vector field would then yield a
vertical vector at any point b ∈ Fp.

9.3.1 Ehresmann Connection

We now introduce the following,

9.3.2 Definition Ehresmann connection
A connection Γ on a principal fiber bundle is a choice of a subspace Hb of TbE,
such that

a) For each b ∈ E, we have TbE = Vb ⊕Hb,
b) Rg∗Hb = Hbg,
c) Hb is a C∞ distribution.

The vector space Hb is called the horizontal subspace of TbE at b, and tangent
vectors in this space are called horizontal. Condition (a) says that any tangent
vector Y ∈ TbE can be split as a sum of a vertical and a horizontal component
that we denote as,

Y = vY + hY.

Condition (b) says that the distributions b → Hb is right-invariant under the
action of G . A connection on a principal fiber bundle as defined above is called
an Ehresmann connection.
Given a connection Γ we define a Lie-Algebra valued one form

ωb : TbE → g

that for each tangent vector Y ∈ TbE, it assigns the unique vector vector X ∈ g
whose fundamental vector field σ(X) is the vertical component of Y . In the
language of distributions, Hb is the kernel of the map,

Hb = {Y ∈ TbE : ω(Y ) = 0.}
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Since the map ω is onto for every b ∈ E, the kernel Hb is a linear subspace of
TbE with dimension equal to the dimension of M with ω(YH) = 0. To be clear,
we are saying,

ω(Y ) =

{
X if Y = σ(X),

0 if Y is horizontal.

Here we assume that the space Hb annihilated by ω is a C∞ distribution in the
sense of Frobenius 7.44.

Motivated by the formula for the pull-back of the Maurer-Cartan form 7.66
and by equation 7.75, we can equivalently characterize an Ehresmann connec-
tion, by the conditions stated in the following,

Fig. 9.5: Ehresmann Connection

9.3.3 Theorem An Ehresmann Connection on a principal fiber bundle ξ =
{E,M, π, F,G}, is a smooth, Lie Algebra valued form ω ∈ Ω(E) that satisfies
the following conditions:

a) ω(σ(X)) = X, for all X ∈ g,
b) R∗gω(Y ) = Adg−1ω(Y ), for all g ∈ G, and all tangent vectors Y on E.

Part (a) is immediate from the definition. Part (b) essentially follows from the
fact that the fundamental vector field associated with Rg∗ω is Adg−1ω. Y can
be split uniquely into a horizontal and a vertical component. If Y is horizontal,
then both sides of the equation are zero. If Y is vertical, it is the fundamental
vector field σ(X) for some X ∈ g. Then

(R∗gω)b(Y ) = ωbg(Rg∗Y ),

= ωbg(σ(Adg−1X)) by equation 7.75

= Adg−1X

(R∗gω)b(Y ) = Adg−1(ωb(Y )). (9.10)

We now show how to pull down a connection ω on a principal fiber bundle
E down to a family of local connections on the manifold. Here we adapt the
procedure from Kobayashi and Nomizu [18], with apologies to the authors for
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diminishing the elegance of their proof, for the sake of clarity provided by adding
more details. Let {Ui} be an open cover of M with coordinate charts {(φi, Ui)}.
For each i let si(p) be the section over Ui defined by

si(p) = φ−1
i (p, e), p ∈ Ui, e = id ∈ G

Given a connection ω in the bundle E, define local connections on M using
the pullback of the section maps. Thus, over each pair of overlapping charts
Ui ∩ Uj 6= ∅, we define,

ωi = s∗iω,

ωj = s∗jω.

Since the transition functions map

ϕij : Ui ∩ Uj → G,

we can pull-back forms. In particular, let θ be the left invariant Maurer-Cartan
form on G. We define a g-valued form on Ui ∩ Uj by

ϕ∗ij : TG→ T (Ui ∩ Uj),
θij = ϕ∗ijθ.

For applications to gauge theory, following result is very important,

9.3.4 Theorem On Ui ∩Uj 6= ∅, the local forms ωi and θij on M satisfy the
condition

ωj = (Adϕ−1
ij

)ωi + θij . (9.11)

Proof Given a point p ∈ Ui ∩ Uj , let Xp ∈ Tp(Ui ∩ Uj) be a tangent vector
to a curve x(t), with x(0) = p and X = x′(t). Then the transition equation for
the sections 9.9 reads

sj(x(t)) = si(x(t))ϕij(x(t)).

The push-forward
sj∗(Xp) : Tp(Ui ∩ Uj)→ Tsj(p)E ,

is the image of (si∗(X), ϕij∗(X)) under the isomorphism

Tsi(p)E ⊗ Tϕij(p)G ∼= Tsj(p)E.

More specifically, taking the derivative d/dt and evaluating a t = 0 as done
with the product rule formula 6.2, we get

d

dt
[sj(x(t))]t=0 =

d

dt
[si(x(t)) ϕij(x(t))]t=0,

=
d

dt
[si(x(t)) ϕij(p))]t=0 +

d

dt
[si(p)) ϕij(x(t))]t=0,

sj∗(X) =
d

dt
[Rϕij(p)) si(x(t))]t=0 +

d

dt
[si(p))ϕij(x(t))]t=0,

= Rϕij(p)∗ si∗(X) + si∗(p) ϕij∗(X)).
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We now apply ω to both side remembering the general definition of the pullback
s∗ω(X) = ω(s∗X). We get

ω(sj∗(X)) = ω(Rϕij(p)∗ si∗(X)) + ω(si∗(p) ϕij∗(X)),

s∗jω(X) = R∗ϕij(p)ω(si∗(X)) + ω(si∗(p) ϕij∗(X)),

ωj(X) = R∗ϕij(p)ωi(X)) + ω(si∗(p) ϕij∗(X)),

ωj(X) = (Adϕ−1
ij

)ωi(X)) + ω(si∗(p) ϕij∗(X)),

where in the first term on the right, we have used the condition 9.10 for an
Ehresmann connection. The second term on the right is a bit trickier. We see
from the diagram below

Tp (Ui ∩ Uj)
ϕij∗−−−→ Tϕij(p)G

↓ ↓
p ∈ (Ui ∩ Uj)

ϕij−−→ ϕij(p) ∈ G,

that ϕij(x(t) is a curve in G, whose differential map sends the tangent vector
X at p to a tangent vector in G at ϕij(p)

Xp
ϕij∗−−−→ ϕij∗(X)|ϕij(p)

On the other hand, one can think of si(p) as a map from G to E given by

si(p) : G→ E,

g
si(p)−−−→si(p)g.

Thus si∗(p) ϕij∗(X) is the push-forward of ϕij∗(X) to TE by the Jacobian
map si∗(p) : TG → TE. If Y ∈ g is the left-invariant vector 2 in G such that
Y = ϕij∗(X) at ϕij(p), then, we have

θ(Y ) = θ(ϕij∗X) = Y

The image of Y under si∗(p) corresponds to a fundamental vector σ(Y ), there-
fore, by the definition of an Ehresmann connection

ω(si∗(p) ϕij∗(X) = ω(σ(Y )),

= Y,

= θ(ϕij∗(X)),

= ϕ∗ijθ(X),

= θij(X)

2Specifically, Ye = L−1
ϕij(p)∗

(ϕij∗(X)ϕij(p)). The notation is a bit cluttered but the concept

is rather simple. The vector Y generates a one parameter subgroup of G whose tangent vector
at ϕij(p) concides with ϕij∗(X). The integral curve of Y induces a fundamental vector field
σ(Y ) on the fiber Fp
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The converse of the theorem is obtained by reversing the argument above. This
concludes the proof.

If G is a matrix group, and on the overlap of the charts Ui ∩ Uj we denote
the transition functions ϕij(p) by a matrix transformation B, then equation
9.11 reads

ωj = B−1ωiB +B−1dB,

which we immediately recognize as the transformation law for an affine con-
nection in the manifold, (or a local gauge transformation in the language of
physics.) Since this holds for any pair of overlapping patches, we see that the
connection in the bundle gives rise to a family of connections on M which piece
together as we desire on any overlap.

9.3.2 Horizontal Lift

Given a principal fiber bundle ξ = {E, π,M,G}, and b ∈ E, we define the

horizontal lift X]
b of a vector field X ∈ X (M) to be the a horizontal vector at

p that projects to X; that is

a) v(X]
b) = 0,

b) π∗(X
]
b) = Xπ(b).

The horizontal lift is right translation invariant meaning

c) Rg∗X
]
b = X]

bg for all b ∈ E and g ∈ G.

We have the following,

9.3.5 Proposition Let X] and Y ] be horizontal lifts of X and Y respectively,

and let f ∈ F (M). Denote by f ] the composition f ] : E
π−→M

f−→ R. Then

a) X] + Y ] = (X + Y )],

b) f ]X] = (fX)],

c) h[X], Y ]] = [X,Y ]].

Proof Only part (c) requires a little thinking. The proof rests on the fact that
the push-forward of the Lie bracket is equal the bracket of the push-forwards,
as shown in equation 7.25. We have

π∗(h[X], Y ]]) = π∗([hX
], hY ]],

= π∗([X
], Y ]]),

= [π∗X
], π∗Y

]],

= [X,Y ].

To give a better illustration of the horizontal lift of vector fields, consider the
bundle of frames E = B(M).

If ∇ is a connection on M , using the notion of parallelism defined by 6.64,
we can parallel transport the tangent space along curves in M . Let {x1, . . . , xn}
be coordinates in a coordinate chart about a point p ∈ M and let {∂i = ∂

∂xi }
be the standard basis for TpM . The horizontal lifts {(∂i)]} then constitute
a basis for the distribution b 7→ Hb. Let b = (p, e1, . . . en) ∈ B(M), with
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ej = Aij∂i, A ∈ Gl(n,R), and α(t) be a curve in M with α(0) = p. By parallel
translation {ei(t) = ei|α(t)} of the frame {ei}|p, we define a curve

α](t) = (α(t), e1(t), . . . en(t)).

Since (π◦α])(t) = α(t), we get a horizontal lift α](t) of α(t). Thus a connection
on M allows us to get unique horizontal lifts of curves in M . A connection on
the frame bundle, together with the notion of horizontal lifts of vector fields,
provide a way to naturally lift curves on M to the bundle. Let α(t) be a curve
in M with tangent vector field T in a neighborhood U where α is injective.
Lift T horizontally to T ], and let α] be the integral curve in B(M). If T ]b is

horizontal, that is T ]b ∈ Hb, then by the properties of the bundle connection,

Rg∗T
]
b = T ]pg is also horizontal. Thus, The curve α] is horizontal independent

of the point b a t = 0. The horizontal lift defines a parallel transport on the
manifold. The idea extends to any principal fiber bundle. For a more careful
treatment, see for example, Kobayashi and Nomizu [18] or Spivak [34].

9.3.3 Curvature Form

Returning the concept of a connection on
a principal fiber bundle ξ = {E, π,M,G}, and
ξ = {E, π,M,G}, with b ∈ E, we introduce the
following .

9.3.6 Definition A form φ of degree k in E
is called a tensorial form of adjoint type if

R∗gφ = Adg−1 · φ, for all g ∈ G,

and φ(X1, . . . , Xk) = 0 if at least one of the
tangent vectors Xi in E os vertical. The k + 1
form Dφ = (dφ)h, that is

Dφ(X1, . . . , Xk+1) = dφ(hX1, . . . , hXk+1),

is a tensorial form Dφ called the exterior covariant derivative of φ.

Now we come the main result of this section. First, we will need,

9.3.7 Lemma If Y1 is horizontal and Y2 = σ(X2) is a fundamental vertical
vector generated by X2, then [Y1, Y2] is horizontal.
Proof Let ϕt = etX2 be the one-parameter subgroup in G generating Y2 by
right translation R$t . Then

[Y1, Y2] = −[Y2, Y1] = −£Y2
Y1,

= − lim
t→0

Y1 −Rϕt∗Y1

t
.
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If Y1 is horizontal, so is Rϕt∗Y1, so the left hand side [Y1, Y2] is also horizontal.

9.3.8 Theorem Let ω be a connection on E. Then the curvature form
defined as Dω satisfies the structure equation

Dω(Y1, Y2) = dω(Y1, Y2) + [ω(Y1), ω(Y2)]. (9.12)

Proof Every vector in Y ∈ TE can be split into the sum of a vertical and a
horizontal vector. Both sides of the structure equation are skew-symmetric and
bilinear, so it suffices to treat the following three cases
Case 1. Y1 and Y2 are horizontal. Then ω(Y1) = ω(Y2) = 0, and hY1 =
Y1, hY2 = y2. Inserting into equation 9.12, we get

Dω(Y1, Y2) = dωY1, Y2 = dω(hY1, hY2),

which is precisely the definition of Dω.
Case 2. Y1 and Y2 are vertical. By definition, Ω(Y1, Y2) = 0, thus we have to
prove that the right hand side is also 0. Since Y1, Y2 are fundamental vector
fields, there exist vectors X1, X2 ∈ g such that Y1 = σ(X1) and Y2 = σ(X2). So
ω(Y1) = X1 and ω(Y2) = X2 are constant. From the definition of the differential
of a one-form 6.28, we have,

dω(Y1, Y2) = Y1(ω(Y2))− Y2(ω(Y1))− ω([Y1, Y2]),

= −ω([Y1, Y2]) = −ω([σ(X1), σ(X2)]),

= −ω(σ[X1, X2]), by theorem 7.3.4,

= −[X1, X2] = −[ω(Y1), ω(Y2)].

Thus,
dω(Y1, Y2) + [ω(Y1), ω(Y2)] = 0.

Case 3. Y1 is horizontal and Y2 is vertical. By definition Ω(Y1, Y2) = 0, so we
have to show that right hand side is also 0. Extend Y1 to a horizontal vector
field, and let X2 ∈ g be the vector generating Y2 = σ(X2). Then as in case
2, ω(Y2) = ω(σ(X2)) is constant, so Y1(ω(Y2)) = 0 and [ω(Y1), ω(Y2)] = 0. It
remains to show that dω(Y1, Y2) = 0, We have,

dω(Y1, Y2) = Y1(ω(Y2))− Y2(ω(Y1))− ω([Y1, Y2]),

= −ω([Y1, Y2]),

= 0. by lemma 9.3.7.

9.4 Gauge Fields

As described in the historical notes earlier, physicists and mathematicians
developed the notion of a connection on a principal fiber bundle independently,
and it wasn’t until the 1970’s that they realized that they were talking about
the same objects. Here is short lexicon of the corresponding terms used in the
two disciplines
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Mathematics Physics
Principal fiber bundle Gauge space
G structure group Gauge group (such as SU(2))
Connection form Gauge potential (such as A )
Curvature form Field strength (such as E and B)
Local trivialization Choice of gauge
Transition function Change of gauge

To get to the physical significance of the principal fiber bundle formalism, let
ω be a connection on the PFB, with curvature Dω. Assuming the structure
group has dimension k, let {e1, . . . , ek} be a basis for the Lie algebra g. Then
we can write the components of the connection as ω = ωαeα, and the structure
equation 9.12 reads,

Ωα = dωα +
1

2
Cαβγω

β ∧ ωγ.

The α’s in the forms Ωα and ωα are Lie algebra indices which reflect the fact that
the forms are Lie algebra valued. The reader will of course note the similarity
to the Maurer-Cartan equations 7.68. If we pick a local trivialization {U,ϕ}
with local section s : U → E, and label the local forms

A = s∗ω, F = s∗Ω,

we get the expression

Fα = dAα +
1

2
CαβγA

β ∧Aγ.

Better yet, if the local coordinates of the manifold be denoted by {xµ}, we can
write the equation above to include the tensor indices,

Fαµν =
Aαµ
∂xν
− Aαν
∂xµ

+
1

2
CαβγA

β
µ ∧Aγν , (9.13)

which is the familiar form encountered in the physics of Yang-Mills fields. On
the non-empty overlap of two coordinate charts, ω and Ω transform as connec-
tion and a tensorial form should.

9.4.1 Electrodynamics

We take a closer look at the special case of electrodynamics. In the classical
theory of electromagnetism, we find the simplest example of a gauge theory. If
F is the Maxwell 2-form, then as in 2.115, we have dF = 0. Therefore, by the
Poincaré lemma, in a simply connected region, there exist a one form A such
that F = dA. In tensor components, this reads

Fµν = ∂µAν − ∂νAν .

The one form A = Aµ dx
µ is not unique because the transformation

A 7→ A′ = A+ dϕ
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leaves the strength field F invariant. In vector notation, Aµ = (φ,A), the gauge
freedom reads

A′ = A +∇ϕ,

ϕ = φ− ∂φ

∂t
,

and the corresponding fields E and B remain invariant. Thus, one can solve
the dynamic equations working with A, knowing that the observables are gauge
independent. The gauge freedom of the electromagnetic field is an asset, rather
than a liability, for it allows one to adjust the potentials to have properties that
do not affect the fields. Of these, perhaps the most useful is the Lorentz gauge
∂µA

µ = 0 that leads to the wave equation

�Aµ = Jµ

for the potential, and the polarization states of electromagnetic waves. For time
dependent fields, the solutions are called the retarded potentials [17]

φ(t, r) =
1

4π

∫
ρ(tr, r

′)

|r− r′|
d3r′,

A(t, r) =
1

4π

∫
J(tr, r

′)

|r− r′|
d3r′,

where,

tr = t− |r− r′|
c

.

The gauge group is probably more evident in quantum electrodynamics (QED).
From equation 2.123, the classical electromagnetic Lagrangian is

L
EM

= −1

4
FµνF

µν + JµAµ.

As shown there, the Euler-Lagrange equations lead to Maxwell equations. The
Dirac equation 8.81 (with ~ = c = 1) for electron/positron fields

(iγµ∂µ −m)Ψ = 0

is generated by the Dirac Lagrangian for fermion fields of spin 1
2 and mass m,

L
D

= ψ(iγµ∂µ −m)ψ. (9.14)

The Dirac Lagrangian is invariant under the phase transformations

ψ(x) 7→ ψ′(x) = eieλψ(x), ψ(x) 7→ ψ
′
(x) = e−ieλψ(x).

This is called an internal global symmetry, where global refers to the symmetry
being independent of the position, and internal to the symmetry not changing
the location. Since eieλ is unimodular, the gauge group is U(1). On the other
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hand, if we want to impose a local symmetry by letting λ(x) depend on x, the
Dirac Lagrangian transforms as

L
D
7→ L′

D
= ψ[iγµ(∂µ − ie∂µλ)−m]ψ.

To make the new Lagrangian invariant requires the introduction of a covariant
derivative operator

∇µ = ∂µ + ieAµ, (9.15)

with a corresponding modification to the Lagrangian

L
D

= ψ(iγµ∇µ −m)ψ. (9.16)

Finally, if we add the electromagnetic Lagrangian, we get the full QED La-
grangian

L
QED

= ψ(iγµ∇µ −m)ψ − 1
4FµνF

µν . (9.17)

Thus, local invariance leads to a coupling with the electromagnetic potential Aµ

which now can evidently be interpreted as connection on a U(1) bundle, thus
providing a mechanism for covariant derivative along the sections of the bundle.
The QED lagrangian can also be written to elucidate better the coupling to E&
M, as

L
QED

= ψ(iγµ∂µ −m)ψ − 1
4FµνF

µν +AµJ
µ, (9.18)

where Jµ = eψγµψ. If the structure group is replaced by G = U(1) × SU(2)
we get the Weinberg-Salam standard model; if the group is enlarged to G =
SU(3), we get Quantum Chromodynamics (QCD). In either case the Lagrangian
requires only a modification for the curvature form F to have an extra index to
indicate that it is Lie algebra valued. Thus, the QCD Lagrangian is

L
QED

= ψ(iγµ∇µ −m)ψ − 1
4F

α
µνF

µν
α .. (9.19)

As before, the field strength F is the curvature of the connection

F = DA = dA+ +ieA ∧A,

but compared electromagnetism, the wedge/bracket makes this a non-Abelian
gauge theory.

9.4.2 Dirac Monopole

There are no magnetic monopoles, but if there were, we would like the fields
to satisfy an extended Maxwell equation

∇ ·B = 4πρm,

where ρm = gδ(r) is the point density of magnetic charge. Then, the solution
is a 1/r2 law

B = g
r

r3
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Let F be the electromagnetic 2-form for a pure magnetic field. By Stokes’
theorem the flux over a closed surface R bounding a volume V , is

ΦR =

∫
R

F =

∫
R

B · dS =

∫
V

∇ ·B dV,

where,

F = B · dS =
g

r3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy).

If we constrain F to a 2-sphere centered at the origin and convert to spherical
coordinates, the form F simplifies to

F = g sin θ dθ ∧ dφ.

There is of course no globally defined potential for F because that would imply
that dF = 0 and that is no longer true. Still, we seek local forms A with
dA = F . Since up to the constant factor g, F is the curvature form for a
sphere, as shown in example 4.5.9, the natural candidate are the components
of the Cartan connection form

A
trial

= −g cos θ dφ

Unfortunately the potential has singularities that might not be apparent in
spherical coordinates, but become evident in Cartesian coordinates

A
trial

= −g z
r3

x dy − y dx
x2 + y2

This is the same problematic form 2.82 which we noted as a standard coun-
terexample in the discussion of the Poincaré lemma. The form is singular along
x2 + y2 = 0. In Dirac’s original construction of the monopole solution, he al-
lowed for the singularities by essentially cutting of the lower z-axis, a set usually
called a Dirac string. The modern approach circumvents the singularities by
constructing a connection on a Hopf bundle. Let (z1, z2) be coordinates on C2,
with

z1 = x1 + ix2, z2 = x3 + ix4.

and define CP1 as in section 8.1.4 by the quotient C/ ∼ with the equivalence
class

(z1, z2) ∼ (λz1, λz2), λ ∈ C,

and constraining to the three sphere S3 : |z1|2 + |z2|2 = 1. Following the
convention in equation 5.60, let

ζ 1 =
x+ iy

1− z

be the complex number associated with point p(x, y, z) ∈ S2 under the stereo-
graphic projection from the north pole. This gives a coordinate chart for S2,
but the chart misses the north pole. To cover the sphere, we create another
chart by a stereographic projection from the south pole. By the same process
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of ratio and proportions for similar right triangles, we find that the complex
number ζ 2 that represents the same point in the sphere is given by

ζ 2 =
x− iy
1 + z

The minus sign in the y coordinate is needed to preserve the orientation of the
coordinate axes. The chart based on the south pole maps the north pole to 0
and the south pole to∞, so we should expect the change of variables to behave
like the conformal inversion f(z) = 1/z in the complex plane. Not surprisingly
this is exactly what we get,

1

ζ 1
=

ζ
1

ζ 1ζ 1

,

= (x− iy)
x2 + y2

(1− z)2
,

= (x− iy)
1− z2

(1− z)2
,

=
x− iy
1 + z

= ζ 2.

Thus, we can form a cover of S2 by two charts {U1, ζ 1} and {U2, ζ 2} that
overlap on an infinitesimal neighborhood of the equator,

U1 = {(θ, φ) : π2 − ε < θ ≤ π},
U2 = {(θ, φ) : 0 ≤ θ < π

2 + ε.},

where in the overlap, ζ 2 = 1/ζ 1. If one sets ζ 1 = z1/z2, the Hopf fibration

S3 π−→ S2 is obtained by associating a point π(z1, z2) on S2 with the inverse
image of the stereographic projection π−1

s (z1/z2) of S2 to C. It is unavoidable
to have a minor index inconsistency in the chart labels in the sense that ζ 1 is
associated with the projection from the north pole, but the coordinate chart U1

is about the south pole. The bundle charts of S3 π−→ S2 are given by

φ1 : π−1(U1)→ U1 × U(1), φ(z1, z2) = (ζ 1,
z1

|z1| ),

φ2 : π−1(U2)→ U2 × U(1), φ(z1, z2) = (ζ 2,
z2

|z2| ),

We can now perform the flux integrals on the two overlapping hemispheres from
the poles to an angle θ

Φ1 =

∫ ∫
F = −2πg(1 + cos θ),

Φ2 =

∫ ∫
F = 2πg(1− cos θ).

Using Stoke’s theorem,
∫

A · dr =
∫ ∫

F and using the symmetry around a
parallel circle C on S2 at fixed angle θ, we can set A = Aφeφ. The line integrals
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yield the components of the two vector field potentials with corresponding local
connections

(A1)φ = −g(1 + cos θ)

r sin θ
, or A1 = −g(1 + cos θ) dφ,

(A2)φ =
g(1− cos θ)

r sin θ
, or A2 = g(1− cos θ) dφ. (9.20)

As before, the singularity structure of the connections is more evident in Carte-
sian coordinates. Multiplying and dividing equations 9.20 by r, we get

A1 = −g 1

r
(r + r cos θ)dφ,

= −g 1

r
(r + z)

xdy − ydx
x2 + y2

,

= −g r + z

r(r2 − z2)
(xdy − ydx),

= −g 1

r(r − z)
(xdy − ydx)

and

A2 = g
1

r
(r − r cos θ)dφ,

= g
1

r
(r − z)xdy − ydx

x2 + y2
,

= g
r − z

r(r2 − z2)
(xdy − ydx),

= g
1

r(r + z)
(xdy − ydx)

Now we construct a twisted U(1) principal fiber bundle with local trivializations
π−1(U1) and π−1(U2) with transition functions φ12 on the overlap given by

φ12 : ζ 1 →
[
ζ 2

ζ 1

]n
, n ∈ Z

Here, the transition functions are unimodular, so they can be written as einφ ∈
U(1). The number n is required to be an integer to insure smooth gluing on the
overlap. If n = 0 we get a trivial bundle S2 × S1. If n = 1 we get the standard
Hopf bundle. If s1 and s2 are sections over U1 and U2 respectively, we get an
Ehresmann connecton on the bundle with

A1 = s∗1ω, and A2 = s∗2ω.

On the overlap, the connection transformation

A2 = φ−1
12 A1φ12 + φ−1

12 dφ12,

just reads

A2 −A1 = 2gdφ.

As φ goes around the equator, we must have∫ 2π

0

2gφ dφ = 2nπ,

which means that

2g = n ∈ Z



346 CHAPTER 9. BUNDLES AND APPLICATIONS

This is Dirac’s quantization condition for magnetic monopoles. The integer n
corresponds to the first Chern c1 class of the bundle. If in addition the particle
has an electric charge, the wave function must satisfy Shcrödinger’s equation

1

2m
(p− e

c
A)2|ψ〉 = E|ψ〉.

Under the gauge invariance A → A +∇λ, given wave functions |ψ1〉 and |ψ2〉
on U1 and U2, they must transform as

|ψ1〉 = e
ieλ
~c |ψ2〉, λ = 2gφ

where we have restored ~ and c to standard units. For a fixed value of θ, as
the wave functions go from 0 to 2π, the requirement that |ψ〉 be single-valued
implies that

2eg

~c
= n.

That is, for a singly charged monopole (n = 1), the ratio of the magnetic to the
electric charge is given in terms of the fine structure constant

g

e
=

1

2

~c
e2

=
137

2
' 69; (9.21)

an amusing result which I first learned from professor Raymond Sachs in a
problem assigned in my upper division course in E &M. The magnetic monopole
is often called a topological charge, for it essentially arises from the classification
of the transition functions with are basically continuous functions from the
equator S1 to U(1) and hence, they correspond the fundamental homotopy
group π1(U1) = Z

It is worthwhile to view the monopole connection via the complex structure
of the base space. Observe that other than a “Lie algebra” factor of i, the Dirac
monopole 2-form is given by the Kähler form 5.65

F = ig
dζ ∧ dζ̄

(1 + ζζ̄)2
.

We thus expect to have a complex gauge complex potential that leads to this
2-form. First, we use of Euler angles

z1 = ei(ψ+φ)/2 cos θ2 , (9.22)

z2 = ei(ψ−φ)/2 sin θ
2 , (9.23)

to write the equation |z1|2 + |z2|2 = 1 of the three sphere S3. The induced
Riemannian metric on S3 is given

ds2 = 4(dz1dz1 + dz2dz2),

= dθ2 + sin2 θ dφ2 + (dψ + cos θ dφ)2.

The form
ω = dψ + cos θ dφ
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defines a connection on S3 viewed as an S1 bundle over S2. This natural a
connection in complex terms, is induced by the restriction of the form

z̄1dz1 + z̄2dz2

from C2 to S3. The curvature of this connection

Ω = sin θ dφ ∧ dθ,

= i
dζ ∧ dζ̄

(1 + ζζ̄)2
.

extended to Minkowski space, corresponds to a magnetic monopole of field
strength 1. By a short computation, we obtain the real and imaginary parts of
this form. We get

< (z̄1dz1 + z̄2dz2) = x1dx1 + x2dx2 + x3dx3 + x4dx4,

= 1
2d((x1)2 + (x2)2 + (x3)2 + (x4)2)

= 0. on S3,

= (z̄1dz1 + z̄2dz2) = −x2dx1 + x1dx2 − x4dx3 + x4dx3.

Thus we set
ω = i(−x2dx1 + x1dx2 − x4dx3 + x4dx3).

We verify our assertion by looking at the pullback of ω for the sections s1 and
s2 under de bundle trivialization constructed of hemispheres of S2 overlapping
over an infinitesimal band around the equator. We leave to the reader to verify
that

A1 = s∗1(ω) = i =
(

ζ̄ dζ

1 + ζζ̄

)
.

Recall that
ζ 1 = cot( θ2 ) eiφ.

Then, as in the computation leading to the Fubini-Study metric 5.63, we have

ζ̄ = cot( θ2 ) e−iφ,

dζ = − 1
2 csc2( θ2 ) eiθ dθ + i cot( θ2 ) eiφ dφ

= (ζ̄ dζ) = cot2( θ2 ) dφ,

=
1 + cos θ

1− cos θ
dφ.

On the other hand

1 + ζζ̄ = 1 + cot2( θ2 ) = csc2( θ2 ) =
2

1− cos θ

Combining these results together, we get

A1 = ig(1 + cos θ) dφ
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For the chart based on the stereographic projection from the South pole, we
use

ζ 2 = tan( θ2 ) e−iφ.

A completely analogous computation gives the local gauge potential

A2 = −ig(1− cos θ) dφ

9.4.3 BPST Instanton

The complex version of the Dirac monopole introduced in last part of the
section above can be extrapolated to the quaternionic projective space HP1.
Let (q1, q2) ∈ H2, and define the equivalence relation

(q1, q2) ∼ (λq1, λq2), λ ∈ H

The quaternionic projective space HP1 is defined by the quotient H2/ ∼ with
this equivalence relation. Effectively, the projective space is the space of quater-
nionic lines through the origin. The restriction

|q1|2 + |q2|2 = 1

defines a unit sphere S7 centered at the origin. Extending the crude visualiza-
tion shown in 8.2 for the complex projective space, the intersection of quater-
nionic lines with S7 yield three spheres S3. The restriction implies that λ ∈ H
is a unit quaternion, and the set of unit quaternions is the unitary group

Sp(1) = U(1,H) ' SU(2)

This leads to the quaternionic Hopf bundle

S3 ↪→ S7 π−→ S4 ∼= HP1.

There is a natural sp(1)-valued connection on the bundle defined by

ω = = (q̄1dq1 + q̄2dq2)

where again, we neglect the real part, since that vanishes on S7. Using the
stereographic projection from the North and South poles respectively, cover S4

by two quaternionic charts {U1, ζ1}, and {U2, ζ2}, which overlap on a narrow
band around the S3 equator. Of course, in physics the preferred parametrization
of this S3 is by using Euler angles, and the action of SU(2) on the bundle charts
are by right multiplication with Euler angle matrices Q. On the overlap in the
base space, the transition functions are

φ12 =

(
ζ
1

ζ2

)n
.

The BPST instanton bundle corresponds to n = 1 If s : U → π−1(U) is a
section of the bundle over one of these charts, we get a connection

A = s∗ω = =
(

q̄ dq

1 + qq̄

)
(9.24)
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This is the gauge potential for the famous BPST instanton. The pullback F

F = s∗Ω = dA+A ∧A

of the curvature Ω in the bundle, represents the field strength. Since the chart
is locally Euclidean through the stereographic projection, we may think F as a
connection on R4. On R4, the connection is anti-self-dual in the sense of the
Hodge ? map,

?F = −F
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Index

Acceleration
along a curve, 11
Centripetal, 19

Adjoint
Map, 258
Representation, 258

Angular momentum
Commutation relations, 289
Definition, 288
Operator, 292
tensor, 296

Associated vector bundle, 331

Baseball curve, 176
Beltrami equation, 168
Bianchi identities, 195, 196
Bianchi permutability, 152, 155
Bianchi transform, 151, 153
Björling surface, 179
Bour surface, 181
BPST Instanton, 348
Bundle

Cotangent, 35
Dual basis, 35
Fiber, see Fiber bundle
Section, 2
Tangent, 2, 99
Tensor, 38

Bundle of frames, 326
Bundle of orthogonal matrices, 328
Bundle of unitary matrices, 328
Bäcklund Transform, 147–158

Classical formula, 150

Campbell-Baker-Hausdorff, 256
Cartan equations

Connection form, 88, 191

Curvature form, 89
First structure equations, 87
for surface in R3 , 128
in N-P formalism, 304
in NP formalism, 306
in principal bundle, 339
Manifolds, 193
Second structure equation, 88

Cartan magic formula, 245
Cartan subalgebra, 264, 317
Casimir operator, 290
Catenoid

First fundamental form, 104
Helicoid curvature, 133
Minimal surface, 177

Cauchy-Riemann equations, 164, 166
Cayley-Klein parameters, 273, 280
Christoffel symbols, see Connection
Circle

Curvature, 18
Frenet frame, 18

Clairut relation, 217
Clifford algebra, 300, 303
Complex structure

of surface in R3 , 165
Cone

First fundamental form, 105
Geodesics, 217

Conformal map, 163–165
Definition, 165
Jacobian, 164
Mercator, 101
Stereographic, 169

Conformal tensor, 304
Conical helix, 32, 105
Conjugate harmonic, 164, 166
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Connection
Affine, 201
Change of basis, 91, 204, 205
Christoffel symbols, 83, 122, 125,

190, 205
Compatible with metric, 82, 84
Curvature form, 89
Eheresmann, 333
Frenet Equations, 86
Koszul, 81
Levi-Civita, 121, 190
Linear, 200
Parallel transport, 121
Spin, 305

Contractible, 247
Contraction, 40
Coordinate

Cylindrical, 41
Functions, 1
Geodesic, 132
Isothermal, 134, 166
Local, 7
Minkowski, 42
Polar, 8, 30, 58, 60
Slot functions, 10
Spherical, 41, 60, 291
Transformation, 7
Weierstrass, 175

Coordinate patch, see Patch
Cornu spiral, 29
Costa’s surface, 183
Covariant derivative

Divergence, 124
Tensor fields, 84
Vector fields, 81, 191

Covariant differential, 201
of surface normal, 131
of tensor-valued 0-form, 202
of vector field, 202

Covering space, 322
Curvature

Form, see Cartan equations
Gaussian, see Gaussian curvature
Geodesic, 107
Normal, 107–109, 112
of a curve, 15

Curves, 10–33

Fundamental theorem, 22–28
in R3 , 10–22
Isotropic, 174
Natural equations, 28
Plane, 20

Curvilinear Coordinates, 78

de Rham
Cohomology, 247
Complex, 246

de Sitter space, 199
Deformation retract, 247
Determinants

By pull-back, 65
Definition, 46
Levi-Civita symbol, 47
of matrix exponential, 160

Developable surface
Definition, 139
K=0, 139

Diffeomorphism, 7
Differentiable map, 7–9

Jacobian, 7
Push-forward, 8

Differential forms
Alternation map, 52
Closed-Exact, 63, 247
Covariant tensor, 36
Dual, 64
Maxwell 2-form, 71
n-forms, 51
One-forms, 34
Pull-back, 56
Tensor-valued, 53, 199
Two-forms, 43

Dini’s surface, 154
Dirac equation, 300
Dirac monopole, 342
Directional derivative, 4, 240
Distribution, 333

Definition, 251
Integrable, 251

Dolbeault operator, 171
Dual forms

Hodge operator, 64
In R2, 67
In R3, 67
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In Rn, 65
In Minkowski space, 69

Dual tensor, 73, 295

Einstein equations, 209
Einstein manifold, 209
Enneper surface, 175
Eth operator

Definition, 313
in spherical coordinates, 314
Raising-lowering, 314
Spin-weight, 313

Euler angles, 271
Euler characteristic, 231
Euler’s theorem, 119
Euler-Lagrange equations

Arc length, 214
Electromagnetism, 74
Minimal area, 159

Exponential map
Definition, 255
Integral curve, 256

Exterior covariant derivative
Cartan equations, 204
Definition, 203
on principal bundle, 338

Exterior derivative
Codifferential, 66
de Rham complex, 70, 246
of n-form, 54, 239
of one-form, 54, 194, 339
of two-form, 239
Properties, 54, 240

Fiber bundle
Definition, 320
Line, 322
Map, 324
Pull-back, 324
Section, 322

Flow, 238
Foliation, 251
Frame

Cylindrical, 77
Darboux, 106
Dual, 76
in Rn, 75

Orthonormal, 76
Spherical, 77, 291

Frenet frame, 15–22
Binormal, 15
Curvature, 15
Frenet equations, 16
Osculating circle, 19
Torsion, 16
Unit normal, 15

Fresnel diffraction, 30
Fresnel integrals, 21
Frobenius theorem, 252
Fubini-Study metric, 170, 313
Fundamental vector, 266, 333

Gauge fields, 339
Electrodynamics, 340
Yang Mills, 340

Gauss equation, 188
Gauss map, 117

Minimal surfaces, 181
Gauss-Bonnet formula, 229
Gauss-Bonnet theorem, 227–232

For compact surfaces, 231
Gaussian curvature

by curvature form, 128
by Riemann tensor, 127
Classical definition, 114
Codazzi equations, 128
Gauss equations, 120
Geodesic coordinates, 132
Invariant definition, 117
Orthogonal parametric curves, 130
Principal curvatures, 116
Principal directions, 116
Theorema egregium, 126–133
Torus, 129
Weingarten formula, 126

Gell-Mann matrices, 316
General linear group, 234
Genus, 231
Geodesic

and isometries, 244
Coordinates, 132
Curvature, 107, 228
Definition, 206
in orthogonal coordinates, 215
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Torsion, 107
Good cut equation, 313
Gradient, 41

Curl Divergence, 50
Grassmannian, 329

Half-flat space-time, 313
Helicoid

Catenoid curvature, 133
First fundamental form, 104
Tangential developable, 139

Helix, 10
Frenet frame, 20
Unit speed, 15

Henneberg
Surface, 177

Hilbert theorem, 142
Hodge decomposition, 67
Holomorphic function, 164
Holonomy, 189, 192, 228
Homotopy, 247, 325
Hopf bundle, 323, 328, 331, 343, 345

Quaternionic, 348
Hopf fibration

on HP1 , 284
on CP1, 280
on RP1, 278

Horizontal subspace, 333

Inner product, 38–42
bra-ket vectors, 40
k-forms, 66
Polarization identity, 24
Standard in Rn, 24

Integral Curve, 7
Integral curve, 237, 256
Interior product, 40

Properties, 245
Inverse function theorem, 9
Isometries, 24, 165

Also , see Killing vector
Isothermal coordinates, 166–168, 173

Existence, 166
Isotropy subgroup, 265

Jacobi equation, 132
Jacobi identity, 251

Jacobian, see Push-forward

Kähler manifold
Kähler form, 171
Kähler potential, 171

Kerr metric
Boyer-Lindquist coordinates, 308
Connection forms, 313
Ergosphere, 309
Kerr-Schild form, 308

Killing form, 259
Killing vector

Definition, 244
Lie subalgebra, 251

Kuen surface, 155

Ladder operators, 290
Lagrangian

Arc length, 214
Dirac, 341
Electromagnetic, 73, 341
Quantum Chromodynamics, 342
Quantum Electrodynamics, 342

Laplacian
Beltrami, 124, 125, 167
by dual forms in R3, 69
Harmonic function, 125
Isothermal, 166
on forms, 66
Orthogonal coordinates, 80
Spherical coordinates, 79, 124, 292

Legendre polynomials, 292
Levi-Civita symbol, 47, 295, 298
Lie algebra

so(1, 3), 295
so(2,R), 270
so(3,R), 271
su(2), 273
su(3), 316
Definition, 251
Homomorphism, 255, 256, 267
of a Lie group, 253
Simple, semisimple, 263
Subalgebra, 251

Lie bracket
as a Lie derivative, 241
Definition, 114
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Lie derivative
of 1-form, 240
of function, 240
of tensor field, 241, 243
of vector field, 240, 241
Properties, 243

Lie group
SO(2,R), 88, 164
SU(2), 272
SU(3), 315
Definition, 233
Left invariant, 253
Left-right translation, 253

Liebmann theorem, 143
Linear Derivation, 4
Lines, 10
Logarithmic spiral, 30
Lorentz group, 294–303
Lorentz transformation, 294

by spinors, 306
Infinitesimal, 295, 303

Lorentzian manifold
Definition, 208
Einstein tensor, 209
Ricci tensor, 208
Scalar curvature, 209

Loxodrome, 32, 101

Möbius band
as fiber bundle, 321

Manifold
Definition, 94
Differentiable structure, 95
Product, 186
Riemannian, see Riemannian
Submanifold, 95, 188–199, 251

Maurer-Cartan equation, 262
Maurer-Cartan form

Definition, 261
in SO(2,R), 88

Maxwell equations, 71–74
Maxwell spinor, 302
Mean curvature

Classical definition, 114
in isothermal coordinates, 166
Invariant definition, 117

Metric

Cylindrical coordinates, 41
Metric tensor, 38
Minkowski, 42
Riemannian, see Riemannian
Spherical coordinates, 41

Minimal surfaces, 173–184
and stereographic projection, 181
Conjugate, 180
Definition, 129
Gaussian curvature, 180
Isometric family, 181
Minimal area property, 158
Table of Weierstrass parameters,

182
Minkowski space, 42

Dual forms, 69
Morris-Thorne

Coframe, 218
Connection forms, 219
Curvature forms, 219
Geodesics, 220
Ricci tensor, 219
Wormhole metric, 218

Möbius band
as a ruled surface, 137

N-P Formalism, 304
Natural equations, 28–33

Cornu spiral, 29
Logarithmic spiral, 30
Meandering curve, 32

Newman-Penrose equations, 306
Null tetrad, 304
Null vector, 301

One-parameter
Flow, 238
Group of diffeomorphisms, 236, 240,

265, 266
Subgroup of Lie group, 255, 256,

273, 338
Orthogonal

Basis, 24
Parametric curves, 99
Transformation, 25, 76

Orthogonal group, 234, 269–294

Parallel
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Section, 208
Transport, 207
Vector field, 206

Patch
Associated harmonic family, 166,

181
Conjugate, 166
Definition, 93
Degenerate, 153
Holomorphic, 165, 173, 181
Isothermal, 173
Monge, 126, 158
Tchebychev, 147
Weierstrass, 175, 180

Pauli matrices, 273
Pauli-Bloch vector, 277
Permutation symbol, see Levi-Civita
Petrov classification, 307
Pfaffian system, 252
Phase transformation, 341
Plücker coordinates, 330
Poincaré group, 235
Poincaré lemma, 64, 247
Principal fiber bundle

Definition, 325
Ehresmann connection, 333
Horizontal lift, 337

Projective space, 323, 328, 330
Pseudosphere

Area, volume, 145
First fundamental form, 143
Gaussian curvature, 143
Parametric equation, 103
Second fundamental form, 145

Pull-back
Chain rule, 57
Definition, 56
Determinant, 65
Line integrals, 57
of volume form, 57
Polar coordinates, 58
Properties, 56
Surface integrals, 59
Tensor field, 239

Push-forward
Jacobian, 8, 239
Tensor fields, 239

Vector field, 99, 238
Pythagorean triplets, 172

Quaternion
Conjugate, 275
Definition, 274
in Hopf map, 284

Raising-lowering operator, 290
Rasing-lowering operator, 264
Representation

Definition, 258
Irreducible , 258

Ricci flat, 209
Ricci identities, 192

with torsion, 203
Ricci rotation coefficients, 304
Riemann sphere, 301

Bloch sphere, 281
Complex structure, 170
metric, 170

Riemann tensor
Components, 127, 191, 195
Symmetries, 195

Riemannian
Connection, 188
Hypersurface, 188
Manifold, 185
Metric, 185
Product manifold, 186
Riemann tensor, 189
Second fundamental form, 188
Structure equations, 193
Submanifold, 188
Theorema egregium, 193
Torsion tensor, 189

Robinson congruence, 283
Rodrigues formula, 292
Root diagram, 264, 318
Roots

su(3), 317
Rotations

by quaternions, 277
in R2 , 269
in R3 , 271

Ruled surface
Cordinate patch, 136
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Distribution parameter, 139
Gaussian curvature, 138
Hyperboloid, 137
Saddle, 136
Stricture curve, 139

Scherk’s surface, 159
Schrödinger equation, 287
Schwarz inequality, 25
Schwarzschild

Bending of light, 226
Eddington-Finkelstein coordinates,

210
Geodesics, 221
Metric, 220, 221
Precession of Mercury, 226

Second fundamental form
Asymptotic directions, 109
by covariant derivative, 115
Classical formulation, 109
for K = −1, 145
Surface normal, 106

Sectional Curvature, 196
Simplex, 63
Sine-Gordon

Soliton, 147
Surface with K = −1, 146

Singular cube, 63
Soliton

Moving, 154
One-soliton solution, 153
Two-soliton solution, 155

Space of constant curvature, 197
Sphere

Coordinate chart, 95
Euler characteristic, 231
First fundamental form, 101
Gauss map, 117
Gaussian curvature, 119, 129
Geodesics, 214
Loxodrome, 101
Orthonormal frame, 77
Second fundamental form, 110
Structure equations, 89
Temple of Viviani, 10
Total curvature, 230

Spherical harmonics, 292

Spin-weighted, 314
Spin coefficients, 305
Spin dyad, 305
Spinor

2-spinor, 297
4-spinor, 300
Identities, 299
Spin space, 297
Symmetric, 301, 302
Transformation law, 297

Stereographic projection, 169–173
in Rn , 171
in Hopf fibration, 282
Inverse map in S2, 170
Minimal surfaces, 181

Stokes’ theorem
Green’s theorem, 60
in Rn, 62
In R3 , 70

Structure constants
of su(2) , 274
of su(3), 316
of Lie algebra, 262

Surface
Compact, 140, 231
Definition, 95
First fundamental form, 98, 99
Normal, 106
Orientable, 137
Second fundamental form, 109
Surface area, 111

Surface of revolution
First fundamental form, 102
Geodesics, 216
Parametric equation, 96

Symplectic
Matrix, 164

Symplectic group, 235

Tangent bundle, 2
Tangent vector, 1–7

Contravariant components, 5
in Rn, 2

Taub metric, 282
Tennis ball curve, 176
Tensorial form

of adjoint type, 92, 338
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Tensors
Antisymmetric, 41, 46
Bilinear map, 36
Bundle, 38
Components, 37, 239
Contravariant, 37
Metric, 38
Riemann, see Riemannian, Riemann

tensor
Self-dual, 66, 295, 302
Tensor product, 37
Torsion, see Riemannian
Transformation law, 239, 294

Theorema egregium, see Gaussian cur-
vature

Third fundamental form, 115
Torsion

of a connection, 115, 121
Torus

Euler characteristic, 231
First fundamental form, 104
Parametric equation, 96
Total curvature, 230

Total curvature, 230
Transformation group

Definition, 265
Transition fucntions

In R3 , 94
Transition functions

Local coordinates, 205
on manifold, 205

Triangulation, 230
Trinoid, 182
Twistor, 235, 273, 283, 330

Unitary group, 235

Vaidya
Curvature form, 212
Metric, 209
Ricci tensor, 213

Vector field, 2
Flow, 238
Left invariant, 253

Vector identities, 49–51
Velocity, 12–15
Vertical subspace, 333

Villarceau circles, 282
Viviani curve, 10

Wedge product
2-forms, 43
Cross product, 44

Weierstrass elliptic function, 183
Weierstrass patch, see Patch
Weierstrass substitution, 172
Weingarten map

Definition, 114
Eigenvalues, 117
Shape operator, 114

Wigner D-matrices, 294, 315

Zero section, 322
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